Abstract:
Well systems comprise communicating devices for use in subterranean formations. An example well system comprises a mud valve system having a stator and a rotor to modulate drilling mud flow to provide increased pulse amplitude signals up-hole for improved and faster signaling from down-hole tools while also providing for better detection capability up-hole. The improved signaling technique permits for deeper well applications.
Abstract:
A rotary pulser and method is disclosed that includes a housing, a stator supported by the housing, a rotor adjacent to the downhole end of the stator, and a motor assembly coupled to the rotor. A controller may receive a signal that includes drilling information. In response to receiving the signal, the controller causes the motor assembly to rotate the rotor in a first rotational direction through a rotation cycle. The rotation cycle a) rotates the rotor from a first position, where the rotor does not obstruct the at least one passage, into a second position, where the rotor obstructs the at least one passage, and b) rotates the rotor from the second position to a third position in the first rotational direction. Rotation of the rotor generates a pressure pulse in the drilling fluid.
Abstract:
A pressure compensation device for a downhole fluid pressure pulse generator comprising: a membrane sleeve; a membrane support with a bore for receiving a drive-shaft, a central section which receives the membrane sleeve, a male mating section on each side, each having a groove extending around an external surface and at least one opening aligned with the groove; a pair of female mating components with a bore and a channel in an internal surface, each female mating component configured to mate with one of the male mating sections to axially clamp the membrane sleeve between the membrane support and the female mating components; and a pair of retaining rings each received between the male mating section groove and the female mating component channel, where the retaining rings are accessible through the opening in the male mating section and radially expandable into a space in the female mating component to unseat the retaining ring from the groove for removal.
Abstract:
An intelligent drilling riser telemetry system includes a mud pulse telemetry transmitter deployed in a drill string. At least one annular pressure sensor is deployed on a drilling riser and is configured to sense mud pulse telemetry signals in an annular region thereof. A surface processor is in electronic communication with the annular pressure sensor via an electrical transmission line that extends along a length of the drilling riser from the annular pressure sensor to the drilling rig. The processor is configured to decode a transmitted mud pulse telemetry signal.
Abstract:
A method for transmitting data from a downhole location to a location at the surface of the earth includes determining a minimum value and a maximum value of M-samples of data values, determining a keycode for the M-samples of data values that provides an indication of the maximum and minimum values of the M-samples, and encoding the keycode and the data values into one or more encoded words. The one or more encoded words are then transmitted as an acoustic signal in drilling fluid by modulating a mud-pulser. The acoustic signal is received by a transducer uphole from the mud-pulser and converted into an electrical signal. The electrical signal is demodulated into a received encoded word, which is decompressed into the M-samples in accordance with the keycode. The M-samples are then received by a computer processing system disposed as the surface of the earth.
Abstract:
In accordance with some embodiments of the present disclosure, systems and methods for a toolface control system is disclosed. The system includes, a rotating drill string of a drilling tool, an assembly located within the rotating drill string representing a current toolface of the drilling tool, and a controller configured to use pulse width modulation to adjust a rotational speed of the assembly to maintain the current toolface at a desired toolface.
Abstract:
Method and apparatus for generating fluid pulses in a fluid column, such as within a downhole well, are disclosed. A described example fluid pulse generator utilizes a moveable flow conduit through which at least a portion of a downwardly flowing fluid column will pass. The moveable flow conduit can be moved, such as by pivoting, in and out of registry with other components defining the fluid flow path to provide resistance to flow of a selected duration and pattern, and thereby to generate pressure pulses within the fluid column detectable at the surface. In some examples, magnetic actuators will be used to perform the described pivoting of the moveable flow conduit.
Abstract:
A transmission apparatus is a transmission apparatus that generates a pressure wave for transmitting data in drilling mud, and includes a tubular member, a plurality of valves that are provided side by side in an axial direction of the tubular member inside the tubular member, each of which includes a stator including holes for passing the drilling mud, and a rotatable rotor which is provided to overlap the stator and includes blocking portions blocking the holes in the stator according to a rotation position, a motor that rotates the respective rotors, and a control unit that controls the motor 130 so as to rotate and stop the respective rotors at frequencies different from each other, according to data to be transmitted.
Abstract:
A telemetry system including a tubular. A pump in operable communication with the tubular configured to pump a fluid through the tubular; a flow altering arrangement in operable communication with at least one of the pump and the tubular. A flow interacting detail disposed in the tubular; and a load sensor configured to detect forces imposed on the flow interacting detail due to flow through the flow interacting detail and output signals related to the forces detected. Also included is a method of communicating through a tubular.