Abstract:
Provided are dental articles, and methods of making articles, having an aesthetic inorganic coating based on zirconia at least partially stabilized with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide. Stabilized zirconia coatings were found to provide a smooth, low friction surface having high abrasion resistance. These coatings are particularly applicable to orthodontic appliances. While virgin stabilized zirconia coatings can often have an undesirable color cast, it was discovered that this color cast can be substantially eliminated by heat treating the coated appliance in an oxygenated environment. The combination of depositing a stabilized zirconia coating and subsequently heat treating to decolorize the coating provides a surprisingly robust, stable, low-friction coating that is also aesthetic.
Abstract:
Provided are dental articles, and methods of making articles, having an aesthetic inorganic coating based on zirconia at least partially stabilized with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide. Stabilized zirconia coatings were found to provide a smooth, low friction surface having high abrasion resistance. These coatings are particularly applicable to orthodontic appliances. While virgin stabilized zirconia coatings can often have an undesirable color cast, it was discovered that this color cast can be substantially eliminated by heat treating the coated appliance in an oxygenated environment. The combination of depositing a stabilized zirconia coating and subsequently heat treating to decolorize the coating provides a surprisingly robust, stable, low-friction coating that is also aesthetic.
Abstract:
Glass microbubbles include on an average weight basis: from 25.0 to 37.4 percent by weight of silicon; from 5.7 to 8.6 percent by weight of calcium; from 5.2 to 14.9 percent by weight, on a total combined weight basis, of at least one of sodium or potassium; from 0.3 to 0.9 percent of boron; and from 0.9 to 2.6 percent of phosphorus, wherein the weight ratio of phosphorus to boron is in the range of from 1.4 to 4.2, and wherein the glass microbubbles comprise less than 0.4 percent by weight of zinc. A raw product including the glass microbubbles, and methods of making the raw product are also disclosed.
Abstract:
Glass microbubbles include on an average weight basis: from 25.0 to 37.4 percent by weight of silicon; from 5.7 to 8.6 percent by weight of calcium; from 5.2 to 14.9 percent by weight, on a total combined weight basis, of at least one of sodium or potassium; from 0.3 to 0.9 percent of boron; and from 0.9 to 2.6 percent of phosphorus, wherein the weight ratio of phosphorus to boron is in the range of from 1.4 to 4.2, and wherein the glass microbubbles comprise less than 0.4 percent by weight of zinc. A raw product including the glass microbubbles, and methods of making the raw product are also disclosed.