Abstract:
Methods, systems, and computer readable media for providing protection of DC building electrical systems are disclosed. According to one aspect, a system for over-current protection of direct current (DC) building electrical systems includes a DC bus for providing DC power to a building and multiple DC feeder conductors for providing DC power to multiple locations within the building. Each DC feeder conductor is connected to the DC bus via a DC protection module having a fuse, a normally closed switch connected in parallel with the fuse, and a circuit breaker connected in series with the fuse and switch, where the switch is controllable to be closed to protect the fuse against transient current conditions and controllable to be open after the transient current conditions have subsided to allow the fuse to operate normally.
Abstract:
Power flow in a hybrid AC-DC power system is analyzed by determining DC power injection variables as a function of AC state information for common coupling buses which connect AC and DC grids. The AC state information includes voltage magnitude and phase angle information for the common coupling buses and buses in the AC grid(s). The DC power injection variables indicate AC power injection into the one or more AC grids at the common coupling buses from the DC grid(s). The AC state information is revised iteratively as a function of the DC power injection variables and the sensitivity of the DC power injection variables to the AC state information, and the DC power injection variables and the sensitivity of the DC power injection variables are revised iteratively as a function of the revised AC state information until the power mismatch is acceptable.