Abstract:
The invention relates to a method for separating a metal part from a ceramic part, which are joined at a connecting face within a modular hybrid component, especially of a gas turbine. The method includes said component being subjected to a reducing atmosphere in a gaseous process at elevated temperatures to dissolve the connection between said metal part and said ceramic part, especially by dissolving the ceramic part itself.
Abstract:
The invention relates to a method for processing a modular hybrid component having a first part made of a first material and a second part made of a second material, which is different from the first material with regard to its electromagnetic and/or thermal properties. The method including exposing the modular hybrid component to an alternating electromagnetic field, whereby both parts are heated up differently, and that a brazing or soldering joint or field sensitive mineral cement between the first part and the second part is affected by the heating action.
Abstract:
The invention proposes a method for applying a high-temperature stable coating layer on the surface of a component, which includes: providing a component with a surface to be coated; providing a powder material containing at least a fraction of sub-micron powder particles; and applying said powder material to the surface of the component by means of a spraying technique to build up a coating layer, whereby said sub-micron powder particles are each at least partially surrounded by an oxide shell and establish with their oxide shells an at least partially interconnected sub-micron oxide network within said coating layer.
Abstract:
The invention relates to a coating system for a component of a turbomachine, which includes at least two different base powders. Each of the at least two different base powders has an individual predetermined distribution within the coating system. Further, each of the at least two different base powders is responsible for a specific property of the coating system.