Abstract:
The invention relates to a method for controlling a gas turbine, operating with an integral fuel reactivity measurement concept. In order to fast determine a safe operation range of the gas turbine with respect to flashback and blow-out, the method includes deducing the fuel composition and therefore the fuel reactivity by combined measurements of (n−1) physico-chemical properties of a fuel mixture with n>1 fuel components, for deriving the concentration of one component for each physico-chemical property of the fuel gas mixture or for determining of a ratio of the fuels with known compositions and adjusting at least one operation parameter of the gas turbine at least partially based on the determined property of the fuel gas mixture entering the combustors. With the technical solution of the present invention, by way of detecting fast changes in fuel gas, it is assured that the gas turbine may operate with varieties of fuel gas under optimized performance and in safe operation ranges. In actual applications, the present invention may improve flexibility of gas turbines and cost effectiveness of operation of the gas turbines.
Abstract:
A method for operating a gas turbine plant is provided. According to the method a first fuel gas with a first fuel reactivity and a second fuel gas with a second fuel reactivity which is higher than the first fuel reactivity are injected into a combustor of the gas turbine, and the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled depending on the combustion behavior of the combustor. A gas turbine plant configured to carry out the method is further shown.
Abstract:
The invention relates to a method for operating a gas turbine which includes a compressor with annular inlet area, at least two burners, a combustion chamber and a turbine. According to the method, at least one first partial intake flow, consisting of oxygen-reduced gas which has an oxygen concentration which is lower than the average oxygen concentration of the compressor intake flow, and at least one second partial intake flow, consisting of fresh air, are fed to the compressor in an alternating manner in the circumferential direction of the inlet area. In addition, the invention relates to a gas turbine power plant with a gas turbine, the compressor inlet of which includes at least one first segment and at least one second segment which are arranged in an alternating manner around a compressor inlet in the circumferential direction, wherein a feed for an oxygen-reduced gas is connected to the first segment and a fresh air feed is connected to the second segment of the compressor inlet.
Abstract:
In a method for operating a gas turbine, NOx is removed from the exhaust gases of the gas turbine by means of a selective catalysis device with the addition of NH3. The method achieves an extremely low NOx content while simultaneously achieving economic consumption of NH3 and avoiding NH3 in the exhaust gas by maintaining the NOx content of the exhaust gas at a constant level via a regulated return of a portion of the exhaust gas in varying operating conditions of the gas turbine, and by adjusting the addition of the NH3 in the selective catalysis device to the constant NOx level.