Abstract:
A blading member for fluid flow machines, for example, gas turbine engines. The blading member includes a platform member, at least one airfoil member, and at least one interlock member.
Abstract:
The invention concerns a turbine blade comprising a surface, a recess within the surface, and a damping inlay within the recess. The damping inlay comprises a chamber with a damping material, for example particles. The damping inlay should substantially maintain the aerodynamic profile of the blade to enable normal operation. A further embodiment of the invention describes the method of manufacture of a turbine blade with a damping inlay. The method comprises the steps of manufacturing a turbine blade having a surface and a recess in the surface, and providing one or more damping inlays within the recess such that the damping inlay substantially maintains the aerodynamic profile of the blade, the damping inlay comprising a chamber and a damping material disposed within the chamber.
Abstract:
The invention relates to a turbine blade, including a blade having a front edge and a rear edge, which blade transitions by means of a shaft into a blade root designed for fastening the turbine blade, and including a platform, which is arranged at the lower end of the blade in order to bound a flow channel. The platform is designed as a separate component and can be connected to the blade in a form-fit manner. Flexible application is achieved in that the platform is composed of several individual platform elements, which enclose the blade in the assembled state.
Abstract:
The invention relates to a cooled wall segment in the hot gas path of a gas turbine, particularly to a cooled stator heat shield. Such components have to be properly cooled in order to avoid thermal damages of these components and to ensure a sufficient lifetime. The wall segment according to the invention includes a first surface, exposed to a medium of relatively high temperature, a second surface, exposed to a medium of relatively low temperature, and side surfaces connecting said first and said second surface and defining a height of the wall segment. At least one cooling channel for a flow-through of a fluid cooling medium extends through the wall segment. Each cooling channel is provided with an inlet for the cooling medium and an outlet for the cooling medium. The at least one cooling channel includes at least two heat transfer sections, a first (in the direction of flow of the cooling medium) heat transfer section extending essentially parallel to the surface of relatively high temperature in a first distance and a second heat transfer section extending essentially parallel to the surface of relatively high temperature in a second distance, whereby the second distance is lower than the first distance.
Abstract:
The invention relates to a component for a thermal machine, in particular a gas turbine, which includes a corner and/or edge subjected to a thermally high load. The cooling of the component is improved in a manner such that at least one cooling channel is countersunk into the surface of the component in the immediate vicinity of the corner and/or edge in order to cool the corner and/or edge.
Abstract:
A stator component of a turbomachine is composed substantially of at least one axially extending outer ring (10) which serves as a frame of an inner ring composed of partial segments (20). The partial segments are arranged on one another such that, on the rotor side, they form a coherent circular circumferential surface in relation to the rotational movement of rotor blades (30). The individual partial segment (20) is composed of a material of uniform construction or, at least in a radial direction, of multiple partial bodies constructed from different materials, such as for example ceramic, wherein a partial segment thus formed exhibits predetermined stress and/or expansion behaviour as a function of the load ranges of the turbomachine.
Abstract:
The invention relates to a modular blade or vane for a gas turbine, which includes the modular components of a platform element with a planar or contoured surface defining a platform level and a through-opening therein, and an airfoil, extending through the platform element. The airfoil includes a load carrying structure extending along a longitudinal axis of the airfoil, having a root portion for fastening on a blade or vane carrier of the gas turbine, having a tip portion, and having at least one interior passage, extending from the root portion to the tip portion of the airfoil. An aerodynamically shaped shell extends in a distance over the carrying structure and defining the outer contour of the airfoil. A longitudinally extending gap, is disposed between the carrying structure and the shell. A number of through-holes in the carrying structure direct a cooling medium from the interior passage into the gap. The shell is integrally joined to said carrying structure by a first joint in a region below the platform level of the platform element. The shell is joined to the carrying structure by at least one additional joint, wherein said at least one additional joint is a form-fit joint, allowing relative movement in longitudinal direction between shell and carrying structure.
Abstract:
A blading member for a fluid flow machine, for example, for use in gas turbine engines. The blading member includes a platform member and an airfoil member. The platform member and airfoil member are designed to allow for easy assembly/disassembly and replacement of members independent of other members.
Abstract:
A rotor blade arrangement (20), especially for a gas turbine, which can be fastened on a blade carrier (19) and includes in each case a blade aerofoil element (10) and a platform element (14), wherein the platform elements (14) of a blade row form a continuous inner shroud. With such a blade arrangement, a mechanical decoupling, which extends the service life, is achieved by the blade aerofoil element (10) and the platform element (14) being formed as separate elements and by being able to be fastened in each case separately on the blade carrier (19).
Abstract:
A turbine blade is provided and includes a tip end carrying a shroud and at least one fin, which extends radially away from the shroud. The fin includes a first sidewall and a second sidewall, which are spaced apart, arranged parallel to each other, and are connected to the shroud, and a cutting edge, which is connected to the first and second sidewalls. The cutting edge thereby creates a hollow space between the sidewalls, the shroud, and the cutting edge, and further extends radially away from the first and second sidewalls. Also provided is a method of manufacturing the blade by casting the blade as single piece with the hollow fin or by forging the blade; and machining the fin to create the first and second sidewalls and cutting edge thereby opening the hollow space between said sidewalls and the cutting edge.