Abstract:
A container assembly including a container and a metallic closure. The container includes a polymeric body and a polymeric finish. The polymeric finish includes a plurality of threads. A lug lock is associated with each one of the plurality of threads. The metallic closure includes at least three metallic lugs configured to cooperate with the plurality of threads to couple the metallic closure to the polymeric finish.
Abstract:
A container assembly including a container and a metallic closure. The container includes a polymeric body and a polymeric finish. The polymeric finish includes a plurality of threads. A lug lock is associated with each one of the plurality of threads. The metallic closure includes at least three metallic lugs configured to cooperate with the plurality of threads to couple the metallic closure to the polymeric finish.
Abstract:
A method of forming a container includes providing a preform of the container. The preform has a wall with an interior region and an exterior region. The method also includes disposing the preform in a mold cavity wherein the mold cavity has a mold surface. Furthermore, the method includes introducing a substance into the preform to expand the preform toward the mold surface. The interior region of the wall has a first interior temperature prior to the introduction of the substance and a second interior temperature after the introduction of the substance. The exterior region of the wall has a first exterior temperature prior to the introduction of the substance and a second exterior temperature after the introduction of the substance. The method further includes controlling the first interior temperature to be greater than the first exterior temperature prior to the introduction of the substance.
Abstract:
A container assembly including a container and a metallic closure. The container includes a polymeric body and a polymeric finish. The polymeric finish includes a plurality of threads. A lug lock is associated with each one of the plurality of threads. The metallic closure includes at least three metallic lugs configured to cooperate with the plurality of threads to couple the metallic closure to the polymeric finish.
Abstract:
A blow-molded container including a finish and a base. The finish defines an opening at a first end of the container that provides access to an internal volume. The base includes a diaphragm and a standing surface. The diaphragm extends radially outward from a central push-up portion. The standing surface of the container is at a second end of the container. In response to an internal vacuum caused by hot-filling and closing the container, the diaphragm is configured to move passively from an as-blown first configuration to a second configuration in which the diaphragm is closer to the first end of the container as compared to the as-blown first configuration. The diaphragm is configured to move from the second configuration to an activated third configuration in which the diaphragm is closer to the first end of the container in response to the diaphragm being externally actuated by a tool.
Abstract:
A container having a hydrogen generator and catalyst disposed or otherwise incorporated in components of the container. The container further comprises a system for providing at least a portion of the hydrogen generator and/or catalyst in an area defined within the closure of the container for improved performance.
Abstract:
A container assembly including a container and a metallic closure. The container includes a polymeric body and a polymeric finish. The polymeric finish includes a plurality of threads. A lug lock is associated with each one of the plurality of threads. The metallic closure includes at least three metallic lugs configured to cooperate with the plurality of threads to couple the metallic closure to the polymeric finish.