Abstract:
A hydrogen storage system includes a pressure-sealed storage unit defining an interior and having an outlet, an upper manifold and a lower manifold separated by a dividing plane having a set of ports, a set of chambers, and a hydrogen storage, wherein at least some hydrogen gas is supplied to the outlet.
Abstract:
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Abstract:
The present invention discloses a fuel supply for a fuel cell, the fuel cell including a liquid storage area that includes a liquid reactant, a reaction area that includes a solid reactant, wherein the liquid reactant is pumped into the reaction area such that the liquid reactant reacts with the solid reactant to produce reaction components, a product collection area that receives the reaction components, a barrier, and a container with an interior volume that substantially encloses the reaction area, liquid storage area, product collection area. The barrier separates and defines several of the aforementioned areas, and moves to simultaneously increase the product collector area and decrease the liquid storage area as the liquid reactant is pumped from the liquid storage area and the reaction components are transferred into the product collection area.
Abstract:
A container 22 includes a shell 24 made from a polymer, for example PET, and incorporating a catalyst, for example a palladium catalyst. A closure 40 incorporates a plug which includes a source of hydrogen, for example a hydride. In use, with container 22 including a beverage and closure 40 in position, the headspace in the container will be saturated with water vapor. This vapor contacts the hydride associated with plug 42 and as a result the hydride produces molecular hydrogen which migrates into the polymer matrix of shell 24 and combines with oxygen which may have entered the container through its permeable walls. A reaction between the hydrogen and oxygen takes place, catalyzed by the catalyst, and water is produced. Thus, oxygen which may ingress the container is scavenged and the contents of the container are protected from oxidation.
Abstract:
Embodiments of the present invention relate to a hydrogen generating fuel comprising grains comprising a promoter and AlH3, each grain having a size between 1 and 10 μm. In some embodiments, the grains can be pressed into a porous pellet.
Abstract:
This disclosure is drawn to systems, devices, apparatuses, and/or methods, related to fuel cell cartridges. Specifically, the disclosed systems, devices, apparatuses, and/or methods relate to compact fuel cell cartridges for producing hydrogen gas for use by fuel cells. Some example fuel cell cartridges may include a reactor module for storing a reactant, a water module for storing water, and an interface coupling the reactor module and the water module. The interface may permit the water to flow from the water module to the reactor module such that the water mixes with the reactant in the reactor module to form a gas (e.g., hydrogen gas) that may exit through a gas outlet.
Abstract:
A self-regulating gas generator that, in response to gas demand, supplies and automatically adjusts the amount of gas (e.g., hydrogen or oxygen) catalytically generated in a chemical supply chamber from an appropriate chemical supply, such as a chemical solution, gas dissolved in liquid, or mixture. In some embodiments, the gas generator may employ a piston, rotating rod, or other element(s) to expose the chemical supply to the catalyst in controlled amounts. In another embodiment, the self-regulating gas generator uses bang-bang control, with the element(s) exposing a catalyst, contained within the chemical supply chamber, to the chemical supply in ON and OFF states according to a self-adjusting duty cycle, thereby generating and outputting the gas in an orientation-independent manner. The gas generator may be used to provide gas for various gas consuming devices, such as a fuel cell, torch, or oxygen respiratory devices.
Abstract:
A reaction hydrogen production control mechanism is provided that includes, a solid sodium borohydride mixture, a liquid fuel reactant, at least one liquid delivery medium (LDM), a movable boundary interface (MBI) and a reaction zone, where the MBI is disposed to provide a constant contact between a reacting surface of the solid fuel mixture and the primary LDM to form the reaction zone. A reaction in the reaction zone includes a hydrolysis reaction. The MBI moves according to a spring, gas pressure, or an elastic membrane. Product paths are disposed to transfer reactants from the system. The product paths can include a channel on a surface of the solid fuel mixture, a channel disposed through the solid fuel mixture, a channel disposed about the solid fuel mixture, a contained region disposed about the solid fuel mixture, or a conduit abutting the solid fuel mixture.
Abstract:
Disclosed is a hydrogen generator with a door that can be opened to replace a fuel unit and closed to seal the door. A lock responds directly to pressure within the chamber to prevent opening when the pressure exceeds a threshold value. The lock includes a locking member with a lug that engages a retainer to seal the door when the door is locked and is disengaged from the retainer when the door is unlocked. An opening mechanism moves the locking member to lock and unlock the door. A movable key is engaged with the opening mechanism and the locking member when the pressure in the chamber is at or below the threshold value and disengaged from one of the opening mechanism and the locking member by an actuator (e.g., a flexible diaphragm) so the door cannot be unlocked and opened when the pressure is above the threshold value.
Abstract:
A pyrotechnic process for providing very high purity hydrogen, includes the combustion of at least one solid pyrotechnic charge capable of generating hydrogen-containing gas for the production of a pressurized hot hydrogen-containing gas that contains at least 70% by volume of hydrogen; and the purification of at least one portion of the pressurized hydrogen-containing gas, by passing through a metallic hydrogen separation membrane maintained at a temperature above 250° C., in order to obtain, at the outlet of the membrane, a hydrogen-containing gas that contains at least 99.99% by volume of hydrogen.