Representation learning from video with spatial audio

    公开(公告)号:US11308329B2

    公开(公告)日:2022-04-19

    申请号:US16868805

    申请日:2020-05-07

    Applicant: Adobe Inc.

    Abstract: A computer system is trained to understand audio-visual spatial correspondence using audio-visual clips having multi-channel audio. The computer system includes an audio subnetwork, video subnetwork, and pretext subnetwork. The audio subnetwork receives the two channels of audio from the audio-visual clips, and the video subnetwork receives the video frames from the audio-visual clips. In a subset of the audio-visual clips the audio-visual spatial relationship is misaligned, causing the audio-visual spatial cues for the audio and video to be incorrect. The audio subnetwork outputs an audio feature vector for each audio-visual clip, and the video subnetwork outputs a video feature vector for each audio-visual clip. The audio and video feature vectors for each audio-visual clip are merged and provided to the pretext subnetwork, which is configured to classify the merged vector as either having a misaligned audio-visual spatial relationship or not. The subnetworks are trained based on the loss calculated from the classification.

    REPRESENTATION LEARNING FROM VIDEO WITH SPATIAL AUDIO

    公开(公告)号:US20210350135A1

    公开(公告)日:2021-11-11

    申请号:US16868805

    申请日:2020-05-07

    Applicant: Adobe Inc.

    Abstract: A computer system is trained to understand audio-visual spatial correspondence using audio-visual clips having multi-channel audio. The computer system includes an audio subnetwork, video subnetwork, and pretext subnetwork. The audio subnetwork receives the two channels of audio from the audio-visual clips, and the video subnetwork receives the video frames from the audio-visual clips. In a subset of the audio-visual clips the audio-visual spatial relationship is misaligned, causing the audio-visual spatial cues for the audio and video to be incorrect. The audio subnetwork outputs an audio feature vector for each audio-visual clip, and the video subnetwork outputs a video feature vector for each audio-visual clip. The audio and video feature vectors for each audio-visual clip are merged and provided to the pretext subnetwork, which is configured to classify the merged vector as either having a misaligned audio-visual spatial relationship or not. The subnetworks are trained based on the loss calculated from the classification.

Patent Agency Ranking