-
公开(公告)号:US11308329B2
公开(公告)日:2022-04-19
申请号:US16868805
申请日:2020-05-07
Applicant: Adobe Inc.
Inventor: Justin Salamon , Bryan Russell , Karren Yang
Abstract: A computer system is trained to understand audio-visual spatial correspondence using audio-visual clips having multi-channel audio. The computer system includes an audio subnetwork, video subnetwork, and pretext subnetwork. The audio subnetwork receives the two channels of audio from the audio-visual clips, and the video subnetwork receives the video frames from the audio-visual clips. In a subset of the audio-visual clips the audio-visual spatial relationship is misaligned, causing the audio-visual spatial cues for the audio and video to be incorrect. The audio subnetwork outputs an audio feature vector for each audio-visual clip, and the video subnetwork outputs a video feature vector for each audio-visual clip. The audio and video feature vectors for each audio-visual clip are merged and provided to the pretext subnetwork, which is configured to classify the merged vector as either having a misaligned audio-visual spatial relationship or not. The subnetworks are trained based on the loss calculated from the classification.
-
公开(公告)号:US20210350135A1
公开(公告)日:2021-11-11
申请号:US16868805
申请日:2020-05-07
Applicant: Adobe Inc.
Inventor: Justin Salamon , Bryan Russell , Karren Yang
Abstract: A computer system is trained to understand audio-visual spatial correspondence using audio-visual clips having multi-channel audio. The computer system includes an audio subnetwork, video subnetwork, and pretext subnetwork. The audio subnetwork receives the two channels of audio from the audio-visual clips, and the video subnetwork receives the video frames from the audio-visual clips. In a subset of the audio-visual clips the audio-visual spatial relationship is misaligned, causing the audio-visual spatial cues for the audio and video to be incorrect. The audio subnetwork outputs an audio feature vector for each audio-visual clip, and the video subnetwork outputs a video feature vector for each audio-visual clip. The audio and video feature vectors for each audio-visual clip are merged and provided to the pretext subnetwork, which is configured to classify the merged vector as either having a misaligned audio-visual spatial relationship or not. The subnetworks are trained based on the loss calculated from the classification.
-