Abstract:
Techniques for planar region-guided estimates of 3D geometry of objects depicted in a single 2D image. The techniques estimate regions of an image that are part of planar regions (i.e., flat surfaces) and use those planar region estimates to estimate the 3D geometry of the objects in the image. The planar regions and resulting 3D geometry are estimated using only a single 2D image of the objects. Training data from images of other objects is used to train a CNN with a model that is then used to make planar region estimates using a single 2D image. The planar region estimates, in one example, are based on estimates of planarity (surface plane information) and estimates of edges (depth discontinuities and edges between surface planes) that are estimated using models trained using images of other scenes.
Abstract:
In techniques for iterative saliency map estimation, a salient regions module applies a saliency estimation technique to compute a saliency map of an image that includes image regions. A salient image region of the image is determined from the saliency map, and an image region that corresponds to the salient image region is removed from the image. The salient regions module then iteratively determines subsequent salient image regions of the image utilizing the saliency estimation technique to recompute the saliency map of the image with the image region removed, and removes the image regions that correspond to the subsequent salient image regions from the image. The salient image regions of the image are iteratively determined until no salient image regions are detected in the image, and a salient features map is generated that includes each of the salient image regions determined iteratively and combined to generate the final saliency map.
Abstract:
In techniques of combined composition and change-based models for image cropping, a composition application is implemented to apply one or more image composition modules of a learned composition model to evaluate multiple composition regions of an image. The learned composition model can determine one or more cropped images from the image based on the applied image composition modules, and evaluate a composition of the cropped images and a validity of change from the image to the cropped images. The image composition modules of the learned composition model include a salient regions module that iteratively determines salient image regions of the image, and include a foreground detection module that determines foreground regions of the image. The image composition modules also include one or more imaging models that reduce a number of the composition regions of the image to facilitate determining the cropped images from the image.
Abstract:
In techniques of combined composition and change-based models for image cropping, a composition application is implemented to apply one or more image composition modules of a learned composition model to evaluate multiple composition regions of an image. The learned composition model can determine one or more cropped images from the image based on the applied image composition modules, and evaluate a composition of the cropped images and a validity of change from the image to the cropped images. The image composition modules of the learned composition model include a salient regions module that iteratively determines salient image regions of the image, and include a foreground detection module that determines foreground regions of the image. The image composition modules also include one or more imaging models that reduce a number of the composition regions of the image to facilitate determining the cropped images from the image.
Abstract:
Techniques for planar region-guided estimates of 3D geometry of objects depicted in a single 2D image. The techniques estimate regions of an image that are part of planar regions (i.e., flat surfaces) and use those planar region estimates to estimate the 3D geometry of the objects in the image. The planar regions and resulting 3D geometry are estimated using only a single 2D image of the objects. Training data from images of other objects is used to train a CNN with a model that is then used to make planar region estimates using a single 2D image. The planar region estimates, in one example, are based on estimates of planarity (surface plane information) and estimates of edges (depth discontinuities and edges between surface planes) that are estimated using models trained using images of other scenes.
Abstract:
Joint depth estimation and semantic labeling techniques usable for processing of a single image are described. In one or more implementations, global semantic and depth layouts are estimated of a scene of the image through machine learning by the one or more computing devices. Local semantic and depth layouts are also estimated for respective ones of a plurality of segments of the scene of the image through machine learning by the one or more computing devices. The estimated global semantic and depth layouts are merged with the local semantic and depth layouts by the one or more computing devices to semantically label and assign a depth value to individual pixels in the image.
Abstract:
Joint depth estimation and semantic labeling techniques usable for processing of a single image are described. In one or more implementations, global semantic and depth layouts are estimated of a scene of the image through machine learning by the one or more computing devices. Local semantic and depth layouts are also estimated for respective ones of a plurality of segments of the scene of the image through machine learning by the one or more computing devices. The estimated global semantic and depth layouts are merged with the local semantic and depth layouts by the one or more computing devices to semantically label and assign a depth value to individual pixels in the image.
Abstract:
In techniques for image foreground detection, a foreground detection module is implemented to generate varying levels of saliency thresholds from a saliency map of an image that includes foreground regions. The saliency thresholds can be generated based on an adaptive thresholding technique applied to the saliency map of the image and/or based on multi-level segmentation of the saliency map. The foreground detection module applies one or more constraints that distinguish the foreground regions in the image, and detects the foreground regions of the image based on the saliency thresholds and the constraints. Additionally, different ones of the constraints can be applied to detect different ones of the foreground regions, as well as to detect multi-level foreground regions based on the saliency thresholds and the constraints.
Abstract:
In techniques for image foreground detection, a foreground detection module is implemented to generate varying levels of saliency thresholds from a saliency map of an image that includes foreground regions. The saliency thresholds can be generated based on an adaptive thresholding technique applied to the saliency map of the image and/or based on multi-level segmentation of the saliency map. The foreground detection module applies one or more constraints that distinguish the foreground regions in the image, and detects the foreground regions of the image based on the saliency thresholds and the constraints. Additionally, different ones of the constraints can be applied to detect different ones of the foreground regions, as well as to detect multi-level foreground regions based on the saliency thresholds and the constraints.
Abstract:
In techniques for iterative saliency map estimation, a salient regions module applies a saliency estimation technique to compute a saliency map of an image that includes image regions. A salient image region of the image is determined from the saliency map, and an image region that corresponds to the salient image region is removed from the image. The salient regions module then iteratively determines subsequent salient image regions of the image utilizing the saliency estimation technique to recompute the saliency map of the image with the image region removed, and removes the image regions that correspond to the subsequent salient image regions from the image. The salient image regions of the image are iteratively determined until no salient image regions are detected in the image, and a salient features map is generated that includes each of the salient image regions determined iteratively and combined to generate the final saliency map.