摘要:
Image cropping suggestion using multiple saliency maps is described. In one or more implementations, component scores, indicative of visual characteristics established for visually-pleasing croppings, are computed for candidate image croppings using multiple different saliency maps. The visual characteristics on which a candidate image cropping is scored may be indicative of its composition quality, an extent to which it preserves content appearing in the scene, and a simplicity of its boundary. Based on the component scores, the croppings may be ranked with regard to each of the visual characteristics. The rankings may be used to cluster the candidate croppings into groups of similar croppings, such that croppings in a group are different by less than a threshold amount and croppings in different groups are different by at least the threshold amount. Based on the clustering, croppings may then be chosen, e.g., to present them to a user for selection.
摘要:
Target region filling techniques are described. Techniques are described in which stereo consistency is promoted between target regions, such as by sharing information during computation. Techniques are also described in which target regions of respective disparity maps are completed to promote consistency between the disparity maps. This estimated disparity may then be used as a guide to completion of a missing texture in the target region. Techniques are further described in which cross-image searching and matching is employed by leveraging a plurality of images. This may including giving preference to matches with cross-image consistency to promote consistency, thereby enforcing stereo consistency between stereo images when applicable.
摘要:
Stereo correspondence smoothness tool techniques are described. In one or more implementations, an indication is received of a user-defined region in at least one of a plurality of stereoscopic images of an image scene. Stereo correspondence is calculated of image data of the plurality of stereoscopic images of the image scene, the calculation performed based at least in part on the user-defined region as indicating a smoothness in disparities to be calculated for pixels in the user-defined region.
摘要:
Stereo correspondence smoothness tool techniques are described. In one or more implementations, an indication is received of a user-defined region in at least one of a plurality of stereoscopic images of an image scene. Stereo correspondence is calculated of image data of the plurality of stereoscopic images of the image scene, the calculation performed based at least in part on the user-defined region as indicating a smoothness in disparities to be calculated for pixels in the user-defined region.
摘要:
Stereo correspondence model fitting techniques are described. In one or more implementations, a model may be fit to a region in at least one of a plurality of stereoscopic images of an image scene. The model may then be used as part of a stereo correspondence calculation, which may include computing disparities for the region based at least in part on correspondence to the model.
摘要:
Image cropping suggestion using multiple saliency maps is described. In one or more implementations, component scores, indicative of visual characteristics established for visually-pleasing croppings, are computed for candidate image croppings using multiple different saliency maps. The visual characteristics on which a candidate image cropping is scored may be indicative of its composition quality, an extent to which it preserves content appearing in the scene, and a simplicity of its boundary. Based on the component scores, the croppings may be ranked with regard to each of the visual characteristics. The rankings may be used to cluster the candidate croppings into groups of similar croppings, such that croppings in a group are different by less than a threshold amount and croppings in different groups are different by at least the threshold amount. Based on the clustering, croppings may then be chosen, e.g., to present them to a user for selection.
摘要:
Image zooming is described. In one or more implementations, zoomed croppings of an image are scored. The scores calculated for the zoomed croppings are indicative of a zoomed cropping's inclusion of content that is captured in the image. For example, the scores are indicative of a degree to which a zoomed cropping includes salient content of the image, a degree to which the salient content included in the zoomed cropping is centered in the image, and a degree to which the zoomed cropping preserves specified regions-to-keep and excludes specified regions-to-remove. Based on the scores, at least one zoomed cropping may be chosen to effectuate a zooming of the image. Accordingly, the image may be zoomed according to the zoomed cropping such that an amount the image is zoomed corresponds to a scale of the zoomed cropping.
摘要:
Belief propagation and affinity measure techniques are described. In one or more implementations, beliefs may be formed to solve a labeling problem for a node, such as to perform image processing. An affinity measure may be calculated that describes how similar the node is to another node. This affinity measure may then be used as a basis to determine whether the share the belief formed for the node with the other node to solve a labeling problem for the other node.
摘要:
Disclosed are various embodiments labeling objects using multi-scale partitioning, rare class expansion, and/or spatial context techniques. An input image may be partitioned using different scale values to produce a different set of superpixels for each of the different scale values. Potential object labels for superpixels in each different set of superpixels of the input image may be assessed by comparing descriptors of the superpixels in each different set of superpixels of the input image with descriptors of reference superpixels in labeled reference images. An object label may then be assigned for a pixel of the input image based at least in part on the assessing of the potential object labels.
摘要:
Stereoscopic target region filling techniques are described. Techniques are described in which stereo consistency is promoted between target regions, such as by sharing information during computation. Techniques are also described in which target regions of respective disparity maps are completed to promote consistency between the disparity maps. This estimated disparity may then be used as a guide to completion of a missing texture in the target region. Techniques are further described in which cross-image searching and matching is employed by leveraging a plurality of images. This may including giving preference to matches with cross-image consistency to promote consistency, thereby enforcing stereo consistency between stereo images when applicable.