摘要:
The disclosed visual RRC-humanoid robot is a computer-based system that has been programmed to reach human-like levels of visualization Artificial Intelligence (AI). Behavioral-programming techniques are used to reach human-like levels of identification AI, recognition AI, visualization AI, and comprehension AI. The system is programmed to identify, recognize, visualize and comprehend the full array of sizes, distances, shapes, and colors of objects recorded in the FOV of the system. The following innovative features have been incorporated into the system: (i) incorporation of the RRC, (ii) incorporation of the Relational Correlation Sequencer (RCS): A proprietary RRC-module, (iii) a paradigm shift in the analytical-programming methodology employed in computer vision systems, (iv) incorporation of a central hub of intelligence, (v) design of a “self knowledge” capability and Internalization of all data, and (vi) design of an interface circuit compatible with human-like levels of visualization-AI.
摘要:
The disclosed visual RRC-humanoid robot is a computer-based system that has been programmed to reach human-like levels of visualization Artificial Intelligence (AI). Behavioral-programming techniques are used to reach human-like levels of identification AI, recognition AI, visualization AI, and comprehension AI. The system is programmed to identify, recognize, visualize and comprehend the full array of sizes, distances, shapes, and colors of objects recorded in the FOV of the system. The following innovative features have been incorporated into the system: (i) incorporation of the RRC, (ii) incorporation of the Relational Correlation Sequencer (RCS): A proprietary RRC-module, (iii) a paradigm shift in the analytical-programming methodology employed in computer vision systems, (iv) incorporation of a central hub of intelligence, (v) design of a “self knowledge” capability and Internalization of all data, and (vi) design of an interface circuit compatible with human-like levels of visualization-AI.
摘要:
The disclosed Auditory RRC-Humanoid Robot equipped with a verbal-phoneme sound generator is a computer-based system programmed to reach high levels of human-like verbal-AI. Behavioral programming techniques are used to reach human-like levels of identification-AI, recognition-AI, and comprehension-AI of all the words and sentences presented to the robot as verbal input signals. An innovative behavioral speech processing methodology is used to recognize and repeat the acoustic sequential set of phoneme signals that comprise the verbally generated speech of human speakers. The recognized and repeated sequential set of phoneme signals are then mapped onto a unique phonetic structure such as all the words and clauses listed in a 50,000 word lexicon that may then make up the vocabulary of the RRC-Robot. The system is programmed to hear and understand verbal speech with its auditory sensors, and intelligently responds by verbally talking with its verbal-phoneme sound generator.
摘要:
In one embodiment, a method includes sending an indicator of an availability of a sample from a sample pool stored in a physical inventory. The sample being included in the sample pool based on an attribute of the sample satisfying a condition associated with the sample pool. An indicator that the sample has been selected from the sample pool for analysis at a first test site included in an array of test sites is received. A rule is retrieved from a rule database based on an experimental parameter value associated with the first test site. At least one of the experimental parameter value associated with the first test site or an experimental parameter value associated with a second test site is modified based on a condition within the rule being satisfied.
摘要:
A grille surround (2) for a vehicle (10) includes a shell (30) formed from sheet metal and a backing structure (40). An adhesive (50) is disposed between the shell (30) and the backing structure (40) to fixedly secure the shell (30) to the backing structure (40). The backing structure (40) is attached to the vehicle (10) thereby securing the shell (10) to the vehicle (10). The disclosed configuration allows the shell (10) to be secured to the vehicle (10) without using fasteners that would be visible from the outside of the vehicle.
摘要:
An improved ART2 network provides fast and intermediate learning. The network combines analog and binary coding functions. The analog portion encodes the recent past while the binary portion retains the distant past. LTM weights that fall below a threshold remain below threshold at all future times. The suprathreshold LTM weights track a time average of recent input patterns. LTM weight adjustment (update) provides fast commitment and slow recoding. The network incorporates these coding features while achieving an increase in computational efficiency of two to three orders of magnitude over prior analog ART systems.
摘要:
A dental crown analog suitable for orthodontic anchorage mates with an endosseous dental implant fixture to provide such anchorage at an edentulous site. The crown analog is tapered down toward the transverse dimensions of the implant fixture above the gun line, to minimize the accumulation of bacterial plaque, and to facilitate cleaning by the patient during the process of orthodontic therapy. A standard abutment fixed to the implant fixture may be used with a dental crown overlay fitted over the abutment to provide a choice of crown sizes and shapes.
摘要:
An abutment for orthodontic anchorage is mountable on an osseointegrated dental implant fixture in the same manner as components used to support prosthodontic restorations. This abutment is adjustable around the axis of the implant fixture, and it supports a mount for holding an orthodontic anchor fixed to a buccal or a lingual side of the abutment. The mount is adjustable around an axis running between the buccal and lingual surfaces.