Rapid category learning and recognition system
    1.
    发明授权
    Rapid category learning and recognition system 失效
    快速分类学习和识别系统

    公开(公告)号:US5157738A

    公开(公告)日:1992-10-20

    申请号:US629393

    申请日:1990-12-18

    IPC分类号: G06N3/04

    CPC分类号: G06K9/6222 G06N3/0409

    摘要: An improved ART2 network provides fast and intermediate learning. The network combines analog and binary coding functions. The analog portion encodes the recent past while the binary portion retains the distant past. LTM weights that fall below a threshold remain below threshold at all future times. The suprathreshold LTM weights track a time average of recent input patterns. LTM weight adjustment (update) provides fast commitment and slow recoding. The network incorporates these coding features while achieving an increase in computational efficiency of two to three orders of magnitude over prior analog ART systems.

    摘要翻译: 改进的ART2网络提供快速和中级学习。 该网络结合了模拟和二进制编码功能。 模拟部分编码最近的过去,而二进制部分保留了远处的过去。 低于阈值的LTM权重在未来所有时间都保持低于阈值。 超阈值LTM权重跟踪最近输入模式的时间平均值。 LTM重量调整(更新)提供快速承诺和慢速重新编码。 该网络结合了这些编码特征,同时实现了比现有的模拟ART系统提高了两到三个数量级的计算效率。

    Predictive self-organizing neural network
    2.
    发明授权
    Predictive self-organizing neural network 失效
    预测自组织神经网络

    公开(公告)号:US5214715A

    公开(公告)日:1993-05-25

    申请号:US648653

    申请日:1991-01-31

    IPC分类号: G06N3/04

    CPC分类号: G06K9/6222 G06N3/0409

    摘要: An A pattern recognition subsystem responds to an A feature representation input to select A-category-representation and predict a B-category-representation and its associated B feature representation input. During learning trials, a predicted B-category-representation is compared to that obtained through a B pattern recognition subsystem. With mismatch, a vigilance parameter of the A-pattern-recognition subsystem is increased to cause reset of the first-category-representation selection. Inputs to the pattern recognition subsystems may be preprocessed to complement code the inputs.

    摘要翻译: A模式识别子系统响应A特征表示输入以选择A类别表示并预测B类别表示及其相关联的B特征表示输入。 在学习试验期间,将预测的B类别表示与通过B模式识别子系统获得的B类别表示进行比较。 通过不匹配,A模式识别子系统的警戒参数增加,导致第一类别表示选择的重置。 可以对模式识别子系统的输入进行预处理以对输入进行补码。

    System for self-organization of stable category recognition codes for
analog input patterns
    3.
    发明授权
    System for self-organization of stable category recognition codes for analog input patterns 失效
    用于模拟输入模式的稳定类别识别代码的自组织系统

    公开(公告)号:US4914708A

    公开(公告)日:1990-04-03

    申请号:US64764

    申请日:1987-06-19

    CPC分类号: G06K9/4628 G06N3/0409

    摘要: A neural network includes a feature representation field which receives input patterns. Signals from the feature representation field select a category from a category representation field through a first adaptive filter. Based on the selected category, a template pattern is applied to the feature representation field, and a match between the template and the input is determined. If the angle between the template vector and a vector within the representation field is too great, the selected category is reset. Otherwise the category selection and template pattern are adapted to the input pattern as well as the previously stored template. A complex representation field includes signals normalized relative to signals across the field and feedback for pattern contrast enhancement.

    摘要翻译: 神经网络包括接收输入模式的特征表示场。 来自特征表示字段的信号通过第一自适应滤波器从类别表示字段中选择一个类别。 基于所选择的类别,将模板模式应用于特征表示字段,并且确定模板和输入之间的匹配。 如果模板向量与表示域中的向量之间的角度太大,则所选类别被重置。 否则,类别选择和模板模式适应于输入模式以及先前存储的模板。 复合表示场包括相对于场上的信号归一化的信号和用于图案对比度增强的反馈。

    Hierarchical pattern recognition system with variable selection weights
    4.
    发明授权
    Hierarchical pattern recognition system with variable selection weights 失效
    具有可变选择权重的分层模式识别系统

    公开(公告)号:US5311601A

    公开(公告)日:1994-05-10

    申请号:US761759

    申请日:1991-11-04

    IPC分类号: G06N3/04 G06K9/62 G06K9/00

    CPC分类号: G06K9/6222 G06N3/0409

    摘要: In a pattern recognition system, input signals are applied to a short term feature representation field of nodes. A pattern from the short term feature representation field selects at least one category node in a category representation field. The selected category then generates a template pattern. With an insufficient match between the input pattern and template pattern, the category selection is reset. Category selection is based on selection weights which are initially set equal to long term memory weights. After reset, however, selections weights are reduced. Reduction is greatest at those nodes where excitation in F.sub.2 was greater prior to reset. The category representation field is of the same form as the field which receives the input and may itself serve as an input to a higher level pattern recognition system.

    摘要翻译: PCT No.PCT / US91 / 00261 Sec。 371日期:1991年11月4日 102(e)1991年11月4日的PCT日期1991年1月11日PCT。在模式识别系统中,输入信号被应用于节点的短期特征表示场。 来自短期特征表示字段的模式在类别表示字段中选择至少一个类别节点。 所选类别然后生成模板模式。 由于输入模式和模板模式之间的匹配不足,重新设置类别选择。 类别选择基于最初设置为等于长期记忆权重的选择权重。 然而,复位后,选择权重减少。 在复位之前,F2中的激励较大的那些节点的衰减最大。 类别表示字段与接收输入的字段具有相同的形式,并且本身可以用作对较高级别模式识别系统的输入。

    Pattern recognition system
    5.
    发明授权
    Pattern recognition system 失效
    模式识别系统

    公开(公告)号:US5142590A

    公开(公告)日:1992-08-25

    申请号:US644685

    申请日:1991-01-22

    CPC分类号: G06K9/6222

    摘要: A self-categorizing pattern recognition system includes an adaptive filter for selecting a category in response to an input pattern. A template is then generated in response to the selected category and a coincident pattern indicating the intersection between the expected pattern and the input pattern is generated. The ratio between the number of elements and the coincident pattern to the number of elements in the input pattern determines whether the category is reset. If the category is not reset, the adaptive filter and template may be modified in response to the coincident pattern. Reset of the selected category is inhibited if no expected pattern is generated. Weighting of the adaptive filter in response to a coincident pattern is inversely related to the number of elements in the input pattern. The selected categories reset where a reset function is less than a vigilance parameter which may be varied in response to teaching events.

    摘要翻译: 自分类模式识别系统包括用于响应于输入模式选择类别的自适应滤波器。 然后响应于所选择的类别生成模板,并且生成指示预期图案和输入图案之间的交点的重合图案。 元素数量和重合模式与输入模式中的元素数量之间的比率决定了类别是否被重置。 如果该类别不被重置,则可以响应于重合模式来修改自适应滤波器和模板。 如果不产生预期的模式,则禁止所选类别的复位。 响应于一致的图案的自适应滤波器的权重与输入图案中的元素的数量成反比。 所选择的类别在复位功能小于可响应于教学事件而变化的警戒参数的情况下重置。