Abstract:
Techniques are disclosed for coding video data in which frames from a video source are partitioned into a plurality of tiles of common size, and the tiles are coded as a virtual video sequence according to motion-compensated prediction, each tile treated as having respective temporal location of the virtual video sequence. The coding scheme permits relative allocation of coding resources to tiles that are likely to have greater significance in a video coding session, which may lead to certain tiles that have low complexity or low motion content to be skipped during coding of the tiles for select source frames. Moreover, coding of the tiles may be ordered to achieve low coding latencies during a coding session.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
A method and system of using a pre-encoder to improve encoder efficiency. The encoder may conform to ITU-T H.265 and the pre-encoder may conform to ITU-T H. 264. The pre-encoder may receive source video data and provide information regarding various coding modes, candidate modes, and a selected mode for coding the source video data. In an embodiment, the encoder may directly use the mode selected by the pre-encoder. In another embodiment, the encoder may receive both the source video data and information regarding the various coding modes (e.g., motion information, macroblock size, intra prediction direction, rate-distortion cost, and block pixel statistics) to simplify and/or refine its mode decision process. For example, the information provided by the pre-encoder may indicate unlikely modes, which unlikely modes need not be tested by the encoder, thus saving power and time.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
The invention is directed to an efficient way for encoding and decoding video. Embodiments include identifying different coding units that share a similar characteristic. The characteristic can be, for example: quantization values, modes, block sizes, color space, motion vectors, depth, facial and non-facial regions, and filter values. An encoder may then group the units together as a coherence group. An encoder may similarly create a table or other data structure of the coding units. An encoder may then extract the commonly repeating characteristic or attribute from the coding units. The encoder may transmit the coherence groups along with the data structure, and other coding units which were not part of a coherence group. The decoder may receive the data, and utilize the shared characteristic by storing locally in cache, for faster repeated decoding, and decode the coherence group together.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
Abstract:
The invention is directed to an efficient way for encoding and decoding video. Embodiments include identifying different coding units that share a similar characteristic. The characteristic can be, for example: quantization values, modes, block sizes, color space, motion vectors, depth, facial and non-facial regions, and filter values. An encoder may then group the units together as a coherence group. An encoder may similarly create a table or other data structure of the coding units. An encoder may then extract the commonly repeating characteristic or attribute from the coding units. The encoder may transmit the coherence groups along with the data structure, and other coding units which were not part of a coherence group. The decoder may receive the data, and utilize the shared characteristic by storing locally in cache, for faster repeated decoding, and decode the coherence group together.