Abstract:
Devices, methods, and non-transitory program storage devices are disclosed herein to perform predictive image sensor cropping operations to improve the performance of video image stabilization operations, especially for high resolution image sensors. According to some embodiments, the techniques include, for each of one or more respective images of a first plurality of images: obtaining image information corresponding to one or more images in the first plurality of images captured prior to the respective image; predicting, for the respective image, an image sensor cropping region to be read out from the first image sensor; and then reading out, into a memory, a first cropped version of the respective image comprising only the predicted image sensor cropping region for the respective image. Then, a first video may be produced based, at least in part, on the first cropped versions of the one or more respective images of the first plurality of images.
Abstract:
This application relates primarily to various apparatus and method for securing and protecting a camera module within a device housing. The securing and protecting elements are configured to take up minimal space within the device housing so that available space for the camera module is maximized. In some embodiments the securing elements can also include grounding features.
Abstract:
Devices, methods, and non-transitory program storage devices are disclosed herein to perform predictive image sensor cropping operations to improve the performance of video image stabilization operations, especially for high resolution image sensors. According to some embodiments, the techniques include, for each of one or more respective images of a first plurality of images: obtaining image information corresponding to one or more images in the first plurality of images captured prior to the respective image; predicting, for the respective image, an image sensor cropping region to be read out from the first image sensor; and then reading out, into a memory, a first cropped version of the respective image comprising only the predicted image sensor cropping region for the respective image. Then, a first video may be produced based, at least in part, on the first cropped versions of the one or more respective images of the first plurality of images.
Abstract:
This application relates primarily to various apparatus and method for securing and protecting a camera module within a device housing. The securing and protecting elements are configured to take up minimal space within the device housing so that available space for the camera module is maximized. In some embodiments the securing elements can also include grounding features.
Abstract:
An image sensor assembly includes an image sensor die attached adjacent to a cavity and a lower surface in a preformed package having substantially vertical surfaces extending from the lower surface to an upper surface of the package. The image sensor die provides the light receiving surface for capturing the image. A light absorbing layer is applied to a cover such that the light absorbing layer prevents light from falling on the substantially vertical surfaces of the preformed package without preventing the passage of light that falls on the light receiving surface of the image sensor die. The light absorbing layer includes openings that provide a line-of-sight view of two opposing corners of at least one of the light receiving surface and the image sensor die to facilitate placing the cover over the upper surface of the package in registry with the image sensor die.
Abstract:
An image sensor assembly includes an image sensor die attached adjacent to a cavity and a lower surface in a preformed package having substantially vertical surfaces extending from the lower surface to an upper surface of the package. The image sensor die provides the light receiving surface for capturing the image. A light absorbing layer is applied to a cover such that the light absorbing layer prevents light from falling on the substantially vertical surfaces of the preformed package without preventing the passage of light that falls on the light receiving surface of the image sensor die. The light absorbing layer includes openings that provide a line-of-sight view of two opposing corners of at least one of the light receiving surface and the image sensor die to facilitate placing the cover over the upper surface of the package in registry with the image sensor die.
Abstract:
A camera module has an image sensor and a lens assembly that includes a lens barrel having a first cylindrical portion that includes an externally threaded portion and a second cylindrical portion that has a larger diameter than the externally threaded portion. A lens moving mechanism includes a movable sleeve having internal threads that receive the externally threaded portion of the lens assembly. The lens moving mechanism is coupled to the image sensor such that the second cylindrical portion of the lens assembly is closest to the image sensor. The camera module is assembled by inserting the lens assembly into the lens moving mechanism from the side closest to the image sensor. An installation tool may engage the second cylindrical portion to rotate the lens assembly and engage the threaded portions. Features may be provided to retain the lens assembly in the lens moving mechanism before joining the threaded portions.