Abstract:
Embodiments disclosed herein relate generally to a stylus for texture capture. The stylus includes an image sensing and capture device to permit a surface to be scanned using the stylus and an image may be stored and displayed on an electronic device to represent the texture of the scanned surface.
Abstract:
Devices, methods, and non-transitory program storage devices are disclosed herein to perform predictive image sensor cropping operations to improve the performance of video image stabilization operations, especially for high resolution image sensors. According to some embodiments, the techniques include, for each of one or more respective images of a first plurality of images: obtaining image information corresponding to one or more images in the first plurality of images captured prior to the respective image; predicting, for the respective image, an image sensor cropping region to be read out from the first image sensor; and then reading out, into a memory, a first cropped version of the respective image comprising only the predicted image sensor cropping region for the respective image. Then, a first video may be produced based, at least in part, on the first cropped versions of the one or more respective images of the first plurality of images.
Abstract:
Devices, methods, and non-transitory program storage devices are disclosed herein to perform predictive image sensor cropping operations to improve the performance of video image stabilization operations, especially for high resolution image sensors. According to some embodiments, the techniques include, for each of one or more respective images of a first plurality of images: obtaining image information corresponding to one or more images in the first plurality of images captured prior to the respective image; predicting, for the respective image, an image sensor cropping region to be read out from the first image sensor; and then reading out, into a memory, a first cropped version of the respective image comprising only the predicted image sensor cropping region for the respective image. Then, a first video may be produced based, at least in part, on the first cropped versions of the one or more respective images of the first plurality of images.
Abstract:
Various embodiments disclosed herein include techniques for operating a multiple camera system. In some embodiments, a primary camera may be selected from a plurality of cameras using object distance estimates, distance error information, and minimum object distances for some or all of the plurality of cameras. In other embodiments, a camera may be configured to use defocus information to obtain an object distance estimate to a target object closer than a minimum object distance of the camera. This object distance estimate may be used to assist in focusing another camera of the multi-camera system.
Abstract:
Various embodiments disclosed herein include techniques for operating a multiple camera system. In some embodiments, a primary camera may be selected from a plurality of cameras using object distance estimates, distance error information, and minimum object distances for some or all of the plurality of cameras. In other embodiments, a camera may be configured to use defocus information to obtain an object distance estimate to a target object closer than a minimum object distance of the camera. This object distance estimate may be used to assist in focusing another camera of the multi-camera system.
Abstract:
Embodiments disclosed herein relate generally to a stylus for texture capture. The stylus includes an image sensing and capture device to permit a surface to be scanned using the stylus and an image may be stored and displayed on an electronic device to represent the texture of the scanned surface.
Abstract:
A touch implement may include one or more controllers coupled to one or more haptic devices and one or more sensors that detect when the touch implement contacts a surface. The controller may provide haptic feedback via the haptic device(s) to simulate a texture of the surface when the touch implement is in contact. In some cases the texture may correspond to a texture displayed on the surface whereas in other implementations the texture may be unrelated to the appearance of the surface. In some implementations, the touch implement may detect information about the texture of the surface or information encoded in surface about texture or haptic feedback to provide and adjust haptic feedback accordingly. In other implementations, the touch implement may receive transmitted information regarding the texture or haptic feedback to provide and adjust haptic feedback accordingly.