Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
Techniques are disclosed for selectively capturing, retaining, and combining multiple sub-exposure images or brackets to yield a final image having diminished motion-induced blur and good noise characteristics. More specifically, after or during the capture of N brackets, the M best may be identified for combining into a single output image, (N>M). As used here, the term “best” means those brackets that exhibit the least amount of relative motion with respect to one another—with one caveat: integer pixel shifts may be preferred over sub-pixel shifts.
Abstract:
In one embodiment, a method includes obtaining an image comprising a plurality of pixels, determining, for a particular pixel of the plurality of pixels, a gradient value, classifying, based on the gradient value, the particular pixel into a flat class or one of a plurality of edge classes, and denoising the particular pixel based on the classification.
Abstract:
In various implementations a method includes obtaining a plurality of source images, stabilizing the plurality of source images to generate a plurality of stabilized images, and averaging the plurality of stabilized image to generate a synthetic long exposure image. In various implementations, stabilizing the plurality of source images includes: selecting one of the plurality of source images to serve as a reference frame; and registering others of the plurality of source images to the reference frame by applying a perspective transformation to others of the plurality of the source images.
Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
Techniques are disclosed for selectively capturing, retaining, and combining multiple sub-exposure images or brackets to yield a final image having diminished motion-induced blur and good noise characteristics. More specifically, after or during the capture of N brackets, the M best may be identified for combining into a single output image, (N>M). As used here, the term “best” means those brackets that exhibit the least amount of relative motion with respect to one another—with one caveat: integer pixel shifts may be preferred over sub-pixel shifts.
Abstract:
In various implementations a method includes obtaining a plurality of source images, stabilizing the plurality of source images to generate a plurality of stabilized images, and averaging the plurality of stabilized image to generate a synthetic long exposure image. In various implementations, stabilizing the plurality of source images includes: selecting one of the plurality of source images to serve as a reference frame; and registering others of the plurality of source images to the reference frame by applying a perspective transformation to others of the plurality of the source images.
Abstract:
A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.
Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.