Dynamic bracketing operations for image stabilization
    2.
    发明授权
    Dynamic bracketing operations for image stabilization 有权
    用于图像稳定的动态包围操作

    公开(公告)号:US09357130B2

    公开(公告)日:2016-05-31

    申请号:US13909700

    申请日:2013-06-04

    Applicant: Apple Inc.

    CPC classification number: H04N5/23267 H04N5/23254 H04N5/23258 H04N5/2356

    Abstract: Techniques are disclosed for selectively capturing, retaining, and combining multiple sub-exposure images or brackets to yield a final image having diminished motion-induced blur and good noise characteristics. More specifically, after or during the capture of N brackets, the M best may be identified for combining into a single output image, (N>M). As used here, the term “best” means those brackets that exhibit the least amount of relative motion with respect to one another—with one caveat: integer pixel shifts may be preferred over sub-pixel shifts.

    Abstract translation: 公开了用于选择性地捕获,保留和组合多个次曝光图像或括号以产生具有减小的运动引起的模糊和良好噪声特性的最终图像的技术。 更具体地说,在捕获N个括号之后或期间,可以识别M最佳以组合成单个输出图像(N> M)。 如这里所使用的,术语“最佳”是指相对于彼此表现出最小量的相对运动的括号 - 一个值得注意的是:整数像素偏移可能优于子像素位移。

    Automated Selection Of Keeper Images From A Burst Photo Captured Set
    5.
    发明申请
    Automated Selection Of Keeper Images From A Burst Photo Captured Set 审中-公开
    从突发照片捕获集中自动选择守护者图像

    公开(公告)号:US20170006251A1

    公开(公告)日:2017-01-05

    申请号:US15266460

    申请日:2016-09-15

    Applicant: Apple Inc.

    Abstract: Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.

    Abstract translation: 描述了用于改善从一组共同拍摄的图像中保持图像的自动选择的系统和方法。 可以使用图像类型识别和图像质量度量的组合来识别该集合中的一个或多个图像作为保持器图像。 可以使用图像类型识别来将捕获的图像分类为例如三个或更多个类别。 类别可以包括纵向,动作或“其他”。根据所识别的类别,可以不同地分析图像以识别守护者图像。 对于肖像图像,可以使用操作来识别最佳面部组。 对于动作图像,该集合可以被划分为部分,使得从每个部分中选择的守护者图像讲述动作的故事。 对于“其他”类别,可以分析图像,以便选择对于所识别的感兴趣区域具有较高质量度量的图像。

    Dynamic Bracketing Operations for Image Stabilization
    6.
    发明申请
    Dynamic Bracketing Operations for Image Stabilization 有权
    图像稳定的动态包围操作

    公开(公告)号:US20140267802A1

    公开(公告)日:2014-09-18

    申请号:US13909700

    申请日:2013-06-04

    Applicant: Apple Inc.

    CPC classification number: H04N5/23267 H04N5/23254 H04N5/23258 H04N5/2356

    Abstract: Techniques are disclosed for selectively capturing, retaining, and combining multiple sub-exposure images or brackets to yield a final image having diminished motion-induced blur and good noise characteristics. More specifically, after or during the capture of N brackets, the M best may be identified for combining into a single output image, (N>M). As used here, the term “best” means those brackets that exhibit the least amount of relative motion with respect to one another—with one caveat: integer pixel shifts may be preferred over sub-pixel shifts.

    Abstract translation: 公开了用于选择性地捕获,保留和组合多个次曝光图像或括号以产生具有减小的运动引起的模糊和良好噪声特性的最终图像的技术。 更具体地说,在捕获N个括号之后或期间,可以识别M最佳以组合成单个输出图像(N> M)。 如这里所使用的,术语“最佳”是指相对于彼此表现出最小量的相对运动的括号 - 一个值得注意的是:整数像素偏移可能优于子像素位移。

    Efficient machine-readable object detection and tracking
    8.
    发明授权
    Efficient machine-readable object detection and tracking 有权
    高效的机器可读对象检测和跟踪

    公开(公告)号:US09542585B2

    公开(公告)日:2017-01-10

    申请号:US13911983

    申请日:2013-06-06

    Applicant: Apple Inc.

    Abstract: A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.

    Abstract translation: 公开了一种提高机器可读对象检测和跟踪效率的方法。 可以预先评估图像帧的属性,以确定即使存在于图像帧中的机器可读对象是否可能被检测到。 在确定一个或多个图像帧具有能够检测机器可读对象的属性之后,可以评估图像数据以检测机器可读对象。 当检测到机器可读对象时,可以基于在其中识别对象的图像帧与后续帧之间的转换度量而不是对象的检测来确定随后帧中的机器可读对象的位置 在后续的框架。 可以基于与图像帧相关联的图像数据和/或运动传感器数据的评估来识别翻译度量。

    Automated Selection Of Keeper Images From A Burst Photo Captured Set
    9.
    发明申请
    Automated Selection Of Keeper Images From A Burst Photo Captured Set 审中-公开
    从突发照片捕获集中自动选择守护者图像

    公开(公告)号:US20150071547A1

    公开(公告)日:2015-03-12

    申请号:US14021857

    申请日:2013-09-09

    Applicant: Apple Inc.

    Abstract: Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.

    Abstract translation: 描述了用于改善从一组共同拍摄的图像中保持图像的自动选择的系统和方法。 可以使用图像类型识别和图像质量度量的组合来识别该集合中的一个或多个图像作为保持器图像。 可以使用图像类型识别来将捕获的图像分类为例如三个或更多个类别。 类别可以包括纵向,动作或“其他”。根据所识别的类别,可以不同地分析图像以识别守护者图像。 对于肖像图像,可以使用操作来识别最佳面部组。 对于动作图像,该集合可以被划分为部分,使得从每个部分中选择的守护者图像讲述动作的故事。 对于“其他”类别,可以分析图像,以便选择对于所识别的感兴趣区域具有较高质量度量的图像。

    Efficient Machine-Readable Object Detection and Tracking
    10.
    发明申请
    Efficient Machine-Readable Object Detection and Tracking 有权
    高效的机器可读对象检测和跟踪

    公开(公告)号:US20140363044A1

    公开(公告)日:2014-12-11

    申请号:US13911983

    申请日:2013-06-06

    Applicant: Apple Inc.

    Abstract: A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.

    Abstract translation: 公开了一种提高机器可读对象检测和跟踪效率的方法。 可以预先评估图像帧的属性,以确定即使存在于图像帧中的机器可读对象是否可能被检测到。 在确定一个或多个图像帧具有能够检测机器可读对象的属性之后,可以评估图像数据以检测机器可读对象。 当检测到机器可读对象时,可以基于在其中识别对象的图像帧与后续帧之间的转换度量而不是对象的检测来确定随后帧中的机器可读对象的位置 在后续的框架。 可以基于与图像帧相关联的图像数据和/或运动传感器数据的评估来识别翻译度量。

Patent Agency Ranking