Abstract:
Disclosed are systems, methods, and non-transitory computer-readable storage media for scrolling a virtual keyboard on a touch screen device including a display. A first aspect allows detecting a user contact swipe motion in a predetermined direction along said keyboard, scrolling said keyboard across said display in accordance with said motion, and stopping said scrolling upon termination of user contact swipe motion. A second aspect allows scrolling of a virtual keyboard to snap to an intelligent position based on a song key or relative minor of the song key. A third aspect allows a note to be held when a user's finger remains in contact with the display even though the finger is no longer in contact with a key linked to the note on the keyboard as a result of scrolling. A fourth aspect displays a second musical instrument keyboard adjacent to a first musical instrument keyboard, wherein said second musical instrument keyboard is linked to said first musical instrument keyboard such that scrolling of one keyboard causes automatic scrolling of the other keyboard.
Abstract:
A method may include presenting an image capture user interface on a display device of a multipurpose device including a live view portion configured to display a live view of image data currently sensed by an image capture device of the multipurpose device and a recall portion configured to display a thumbnail preview of stored image data most recently captured by the image capture device; receiving an indication of a first touch input on the display device, the first touch input starting at a first position on or near the recall portion of the user interface; receiving an indication of a swiping gesture from the recall portion to a second position with contact being maintained of the first touch input; and in response to the first touch input, displaying an enlarged preview of the stored image data, the enlarged preview being larger in size than the thumbnail preview.
Abstract:
The present disclosure generally relates to user interfaces. In some examples, the electronic device provides for transitioning between simulated lighting effects. In some examples, the electronic device applies a simulated lighting effect to an image. In some examples, the electronic device provides user interfaces for applying a filter to an image. In some examples, the electronic device provides for a reduced filter interface. In some examples, the electronic device provides a visual aid displayed in a viewfinder.
Abstract:
A method may include presenting an image capture user interface on a display device of a multipurpose device including a live view portion configured to display a live view of image data currently sensed by an image capture device of the multipurpose device and a recall portion configured to display a thumbnail preview of stored image data most recently captured by the image capture device; receiving an indication of a first touch input on the display device, the first touch input starting at a first position on or near the recall portion of the user interface; receiving an indication of a swiping gesture from the recall portion to a second position with contact being maintained of the first touch input; and in response to the first touch input, displaying an enlarged preview of the stored image data, the enlarged preview being larger in size than the thumbnail preview.
Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
The present disclosure generally relates to user interfaces. In some examples, the electronic device provides for transitioning between simulated lighting effects. In some examples, the electronic device applies a simulated lighting effect to an image. In some examples, the electronic device provides user interfaces for applying a filter to an image. In some examples, the electronic device provides for a reduced filter interface. In some examples, the electronic device provides a visual aid displayed in a viewfinder.
Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
Abstract:
Disclosed are systems, methods, and non-transitory computer-readable storage media for scrolling a virtual keyboard on a touch screen device including a display. A first aspect allows detecting a user contact swipe motion in a predetermined direction along said keyboard, scrolling said keyboard across said display in accordance with said motion, and stopping said scrolling upon termination of user contact swipe motion. A second aspect allows scrolling of a virtual keyboard to snap to an intelligent position based on a song key or relative minor of the song key. A third aspect allows a note to be held when a user's finger remains in contact with the display even though the finger is no longer in contact with a key linked to the note on the keyboard as a result of scrolling. A fourth aspect displays a second musical instrument keyboard adjacent to a first musical instrument keyboard, wherein said second musical instrument keyboard is linked to said first musical instrument keyboard such that scrolling of one keyboard causes automatic scrolling of the other keyboard.