-
公开(公告)号:US11647650B2
公开(公告)日:2023-05-09
申请号:US17475756
申请日:2021-09-15
Applicant: Apple Inc.
Inventor: Jaein Choi , Hairong Tang , Gloria Wong , Sunggu Kang , Younggu Lee , Gwanwoo Park , Chun-Yao Huang , Andrew Lin , Cheuk Chi Lo , Enkhamgalan Dorjgotov , Michael Slootsky , Rui Liu , Wendi Chang , Cheng Chen
IPC: H10K59/122 , H10K50/19
CPC classification number: H10K59/122 , H10K50/19
Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
-
公开(公告)号:US20220005894A1
公开(公告)日:2022-01-06
申请号:US17475756
申请日:2021-09-15
Applicant: Apple Inc.
Inventor: Jaein Choi , Hairong Tang , Gloria Wong , Sunggu Kang , Younggu Lee , Gwanwoo Park , Chun-Yao Huang , Andrew Lin , Cheuk Chi Lo , Enkhamgalan Dorjgotov , Michael Slootsky , Rui Liu , Wendi Chang , Cheng Chen
Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
-
公开(公告)号:US11211587B2
公开(公告)日:2021-12-28
申请号:US16521837
申请日:2019-07-25
Applicant: Apple Inc.
Inventor: Kwang Ohk Cheon , Aleksandr N. Polyakov , Chen-Yue Li , Chuan-Jung Lin , KiBeom Kim , Nai-Chih Kao , Rui Liu , Wendi Chang
Abstract: A display may have an array of organic light-emitting diode (OLED) pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and cross-talk, the thickness of at least one of the OLED layers may be reduced. To maintain the optical cavity of the pixels, transparent optical spacer structures may be inserted. Alternatively, the thickness of the anodes can be increased. To accommodate a common prime layer within the OLED layers, the optical spacers or anodes may be separately patterned to have different thicknesses. Grating structures and photonic crystal structures may be embedded as part of the optical spacers to help control emission at selected viewing angles.
-
公开(公告)号:US10658441B2
公开(公告)日:2020-05-19
申请号:US16114039
申请日:2018-08-27
Applicant: Apple Inc.
Inventor: Kwang Ohk Cheon , Cheng Chen , Chien Lu , Chih-Lei Chen , Chin Wei Hsu , Hui Lu , KiBeom Kim , Lun Tsai , Meng-Huan Ho , Nai-Chih Kao , Pei-Ling Lin , Rui Liu , Shan-Jen Yu , Wendi Chang , Yusuke Fujino
IPC: H01L27/32 , H01L51/50 , G09G3/3225 , H01L51/56 , H01L51/52
Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material. The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
-
公开(公告)号:US20190067394A1
公开(公告)日:2019-02-28
申请号:US16114039
申请日:2018-08-27
Applicant: Apple Inc.
Inventor: Kwang Ohk Cheon , Cheng Chen , Chien Lu , Chih-Lei Chen , Chin Wei Hsu , Hui Lu , KiBeom Kim , Lun Tsai , Meng-Huan Ho , Nai-Chih Kao , Pei-Ling Lin , Rui Liu , Shan-Jen Yu , Wendi Chang , Yusuke Fujino
IPC: H01L27/32 , H01L51/50 , H01L51/52 , H01L51/56 , G09G3/3225
Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material, The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
-
公开(公告)号:US11700738B2
公开(公告)日:2023-07-11
申请号:US16888451
申请日:2020-05-29
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
IPC: H01L51/52 , H10K50/824 , H10K50/818 , H10K59/35 , H10K59/121
CPC classification number: H10K50/818 , H10K50/824 , H10K59/121 , H10K59/35
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US11309372B2
公开(公告)日:2022-04-19
申请号:US16604491
申请日:2018-04-27
Applicant: Apple Inc.
Inventor: Jaein Choi , Andrew Lin , Cheuk Chi Lo , Chun-Yao Huang , Gloria Wong , Hairong Tang , Hitoshi Yamamoto , James E. Pedder , KiBeom Kim , Kwang Ohk Cheon , Lei Yuan , Michael Slootsky , Rui Liu , Steven E. Molesa , Sunggu Kang , Wendi Chang , Chun-Ming Tang , Cheng Chen , Ivan Knez , Enkhamgalan Dorjgotov , Giovanni Carbone , Graham B. Myhre , Jungmin Lee
Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
-
公开(公告)号:US20210057670A1
公开(公告)日:2021-02-25
申请号:US16888451
申请日:2020-05-29
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US12225751B2
公开(公告)日:2025-02-11
申请号:US18323300
申请日:2023-05-24
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae , Yusuke Fujino , Michael Slootsky
IPC: H10K50/824 , H10K50/818 , H10K59/121 , H10K59/35
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US20230301131A1
公开(公告)日:2023-09-21
申请号:US18323300
申请日:2023-05-24
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
IPC: H10K50/818 , H10K50/824 , H10K59/35 , H10K59/121
CPC classification number: H10K50/818 , H10K50/824 , H10K59/35 , H10K59/121
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
-
-
-
-
-
-
-
-