-
公开(公告)号:US12225751B2
公开(公告)日:2025-02-11
申请号:US18323300
申请日:2023-05-24
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae , Yusuke Fujino , Michael Slootsky
IPC: H10K50/824 , H10K50/818 , H10K59/121 , H10K59/35
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US20230301131A1
公开(公告)日:2023-09-21
申请号:US18323300
申请日:2023-05-24
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
IPC: H10K50/818 , H10K50/824 , H10K59/35 , H10K59/121
CPC classification number: H10K50/818 , H10K50/824 , H10K59/35 , H10K59/121
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US11700738B2
公开(公告)日:2023-07-11
申请号:US16888451
申请日:2020-05-29
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
IPC: H01L51/52 , H10K50/824 , H10K50/818 , H10K59/35 , H10K59/121
CPC classification number: H10K50/818 , H10K50/824 , H10K59/121 , H10K59/35
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
公开(公告)号:US20210057670A1
公开(公告)日:2021-02-25
申请号:US16888451
申请日:2020-05-29
Applicant: Apple Inc.
Inventor: Gloria Wong , Jaein Choi , Sunggu Kang , Hairong Tang , Xiaodan Zhu , Wendi Chang , Kanuo C. Kustra , Rui Liu , Cheng Chen , Teruo Sasagawa , Wookyung Bae
Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
-
-
-