Abstract:
An error correction decoding (ECC) processing scheme is disclosed that reduces computational complexity normally associated with multiuser detection (e.g., TurboMUD) solutions, without causing degradation in quality of service or decreasing the total throughput. Error correction decoding algorithms are applied only to portions of the estimates that were affected by the immediately previous MUD update process. Even though the MUD and/or ECC updating is targeted so as to reduce complexity of each iteration, all of the estimates are maintained and remain candidates for future updates. As such, there is no negative impact real-time or future performance. This targeting approach can be used in conjunction with many variations of MUD, including full-complexity or reduced complexity, and may include MUD with confidence ordering or voting, and other techniques for facilitating efficient and effective MUD processing.
Abstract:
A system is presented that provides real-time performance for iterative multi-user detectors, such as Turbo MUDs, which are used to separate simultaneous transmissions on the same frequency, by permitting the MUD to use a less computationally intense, fast-processing algorithm and to correct for errors caused by the fast processing. In order to reduce the errors, a voting system is coupled to the output of the multi-user detector within the iterative system. The voting system provides confidence values on a bit-by-bit basis for the estimates made by the multi-user detector, with the confidence values then being utilized as soft inputs to a bank of conventional single-user decoders.