Abstract:
The invention is directed to lignocellulosic materials having a core and two outer layers, containing in the core A) lignocellulose particles; B) expanded plastics particles having a bulk density in the range from 10 to 150 kg/m3, C) one or more binders selected from the group consisting of aminoplast resin, phenoplast resin, and organic isocyanate having at least two isocyanate groups, and D) optionally additives and in the outer layers E) lignocellulose particles, F) one or more binders selected from the group consisting of aminoplast resin, phenol-formaldehyde resin, and organic isocyanate having at least two isocyanate groups, and where the lignocellulose particles of the outer layers E comprise at least 25% by weight of lignocellulosic chips and the expanded plastics particles B are present in nonuniform distribution in the core.
Abstract translation:本发明涉及具有芯和两个外层的木质纤维素材料,其包含在芯A)木质纤维素颗粒中; B)膨胀密度在10至150kg / m 3范围内的膨胀塑料颗粒,C)一种或多种选自氨基塑料树脂,酚醛树脂和具有至少两个异氰酸酯基团的有机异氰酸酯的粘合剂,D )任选的添加剂和外层E)木质纤维素颗粒,F)一种或多种选自氨基塑料树脂,酚醛树脂和具有至少两个异氰酸酯基团的有机异氰酸酯的粘合剂,其中木质纤维素颗粒 外层E包含至少25重量%的木质纤维素片,并且发泡塑料颗粒B以不均匀分布存在于芯中。
Abstract:
The present invention relates to a process for the production of lignocellulose materials via mixing A) of lignocellulose-containing particles or fibers, B) with organic isocyanate having at least two isocyanate groups or a mixture of these, and optionally with C) binders selected from the group of the phenol-formaldehyde resins, the aminoplastic resins, the protein-based binders, and other polymer-based binders, and mixtures of these, D) additives or a mixture of these, and E) plastics particles or a mixture of these, with the steps of: i.) scattering of the resultant mixture to give a mat, ii.) precompaction and heating of the mat during or after the precompaction process, and iii.) then hot pressing, wherein, in the step ii.), operations are carried out at elevated temperature during and/or after the precompaction process, and a value of at least 4 cm is achieved for the resultant mat in the push-off test.
Abstract:
The invention relates to a method for producing multi-layered lignocellulose materials having a core and an upper and a lower cover layer, said method comprising the following steps a) mixing the components, b) spreading the mixtures in layers, c) pre-compressing, d) applying a high-frequency electric field e) hot pressing. According to the invention, a mixture of C) 1-15 wt.-% of a binding agent selected from the group consisting of aminoplastic resin and organic isocyanate having at least two isocyanate groups [components C)], F) 0.1-3% alkali-/akaline earth salts, for the cover layers of the lignocellulose particles G) with H) 1-15% of a binding agent selected from the group consisting of aminoplastic resin and an organic isocyanate is mixed. After step a) the mixture for the core contains, with respect to the total dry weight of the mixture of the components A)-F) 3-15% water, the mixture for the cover layers of the components G)-K) contains 5-20% water, and the following conditions are met: F)≥1,1•components K) and [components F)+components D)]≥1,1•[components K)+components I)].
Abstract:
The present invention relates to a batchwise or continuous process for producing single-layer one multilayer lignocellulosic materials, comprising the process steps of (I) mixing the components of the individual layers, (II) scattering the mixture(s) produced in process step (I) to give a mat, (III) optionally precompacting the scattered mat and (IV) hot-pressing the optionally precompacted mat, by using, in process step (I), for the core of multilayer lignocellulosic materials or for single-layer lignocellulosic materials, a mixture (component A) comprising a1) 50% to 99% by weight, preferably 70% to 97% by weight, more preferably 80% to 95% by weight and especially 85% to 92% by weight of organic isocyanate having at least two isocyanate groups or mixtures thereof and a2) 1% to 50% by weight, preferably 3% to 30% by weight, more preferably 5% to 20% by weight and especially 8% to 15% by weight of organic carboxylic acid, carboxylic anhydride, carbonyl chloride or mixtures thereof and a3) 0% to 49% by weight, preferably 0% to 10% by weight and more preferably 0% to 5% by weight of auxiliaries or mixtures thereof.
Abstract:
The present invention relates to a process for producing melamine-urea-formaldehyde resins with up to 0.9% of melamine by reacting a) urea which comprises from 0 to 10% by weight of one or more compounds A, formaldehyde, and melamine in the presence of a base at a pH of from 7.5 to 11, at a temperature of from 20 to 120° C., and at a pressure of from 0.1 to 10 bar, b) and then carrying out reaction in the presence of an acid which optionally comprises urea with from 0 to 10% by weight of one or more compounds A, at a temperature of from 60 to 180° C., and at a pressure of from 0.1 to 10 bar, and c) and then adding urea which comprises from 0 to 10% by weight of one or more compounds A, which comprises carrying out b) at a pH of from 4 to 5.9.
Abstract:
The present invention relates to processes for discontinuously or continuously preparing aminoplast solutions by condensation of aminoplast formers with formaldehyde in a serial cascade of at least three stirred tank apparatus A, B, and C, which involves a) in apparatus A, reacting a mixture comprising formaldehyde and urea in a molar ratio of 2.3:1 to 2.9:1 and water at a pH of 6 to 8, set by means of a base, at a temperature of 80 to 85° C., where apparatus A consists of one or more, i.e., one to ten, preferably one to five, more preferably one to three, more particularly one or two stirred tanks in parallel or in series, very preferably of one stirred tank, b) in apparatus B, reacting said mixture at a molar ratio of formaldehyde to urea of 1.9:1 to 2.6:1, where apparatus B consists of one or more stirred tanks, wherein the molar ratio of formaldehyde to urea is lowered, optionally by further addition of urea, in stages to not less than 1.9:1, at a pH of 3.5 to 5.5, which is kept virtually constant, at a temperature of 100 to 105° C., and with a mean residence time of 10 to 90 minutes in the entire apparatus B, c) in apparatus C, at a temperature of 90 to 100° C., raising the pH to at least 5.9 and lowering the molar ratio of formaldehyde to urea to 1.7:1 to 1.4:1, where apparatus C consists of one or more stirred tanks, and d) by adding urea, at temperatures of 15 to 100° C., setting a final molar ratio of formaldehyde to urea of 0.7:1 to 1.28:1 and a pH of at least 7.
Abstract:
The invention is directed to lignocellulosic materials having a core and two outer layers, containing in the core A) lignocellulose particles; B) expanded plastics particles having a bulk density in the range from 10 to 150 kg/m3, C) one or more binders selected from the group consisting of aminoplast resin, phenoplast resin, and organic isocyanate having at least two isocyanate groups, and D) optionally additives and in the outer layers E) lignocellulose particles, F) one or more binders selected from the group consisting of aminoplast resin, phenol-formaldehyde resin, and organic isocyanate having at least two isocyanate groups, and where the lignocellulose particles of the outer layers E comprise at least 25% by weight of lignocellulosic chips and the expanded plastics particles B are present in nonuniform distribution in the core.
Abstract translation:本发明涉及具有芯和两个外层的木质纤维素材料,其包含在芯A)木质纤维素颗粒中; B)膨胀密度在10至150kg / m 3范围内的膨胀塑料颗粒,C)一种或多种选自氨基塑料树脂,酚醛树脂和具有至少两个异氰酸酯基团的有机异氰酸酯的粘合剂,D )任选的添加剂和外层E)木质纤维素颗粒,F)一种或多种选自氨基塑料树脂,酚醛树脂和具有至少两个异氰酸酯基团的有机异氰酸酯的粘合剂,其中木质纤维素颗粒 外层E包含至少25重量%的木质纤维素片,并且发泡塑料颗粒B以不均匀分布存在于芯中。
Abstract:
The present invention relates to a process for the batchwise or continuous, preferably continuous production of single-layer lignocellulose-based boards or of multilayer lignocellulose-based boards with a core and with at least one upper and one lower outer layer,comprising the following steps: a) mixing of the components of the individual layer(s), b) layer-by-layer scattering of the mixtures to give a mat, c) compaction after the scattering of the individual layer(s), d) application of a high-frequency electrical field, during and/or after the compaction and thermal hardening of the binder(s), e) then optionally hot pressing, and f) cooling the lignocellulose material, where, in step a), for the core or the single layer, the lignocellulose particles A) [component A)] are mixed with B) from 0 to 25% by weight of expanded plastics particles with bulk density in the range from 10 to 150 kg/m3 [component B)], C) from 1 to 15% by weight of one or more binders selected from the group consisting of aminoplastic resin and organic isocyanate having at least two isocyanate groups [component C)], D) from 0 to 3% by weight of ammonium salts [component D)], E) from 0 to 5% by weight of additives [component E)] and F) from 0.1 to 3% by weight of alkali metal salts or alkaline earth metal salts from the group of the sulfates, nitrates, halides and mixtures of these [component F)], and optionally for the outer layers, the lignocellulose particles G) [component G)] are mixed with H) from 1 to 15% by weight of one or more binders selected from the group consisting of aminoplastic resin and organic isocyanate having at least two isocyanate groups [component H)], I) from 0 to 2% by weight of ammonium salts [component I)], J) from 0 to 5% by weight of additives [component J)] and K) from 0.1 to 3% by weight of alkali metal salts or alkaline earth metal salts from the group of the sulfates, nitrates, halides and mixtures of these [component K)], wherein at the juncture Z the temperature of the layer of the core or of the single layer is more than 90° C., and this temperature is reached in less than 40 s/mm·d after the application of the high-frequency electrical field, where d is the thickness of the sheet of lignocellulose material at the juncture Z.
Abstract:
The present invention relates to lignocellulose materials which comprise A) 30 to 98 wt % of one or more lignocellulosic substances, B) 1 to 25 wt % of expanded plastics particles having a bulk density in the range from 10 to 150 kg/m3, C) 1 to 50 wt % of a binder selected from the group consisting of amino resin, phenol-formaldehyde resin, organic isocyanate having at least two isocyanate groups, or mixtures thereof, optionally with a curing agent, and D) 0 to 68 wt % of additives, wherein component B) or the original expandable plastics particles are coated with at least one coating material before, during, or after expansion.
Abstract translation:本发明涉及木素纤维素材料,其包含A)30至98重量%的一种或多种木质纤维素物质,B)1至25重量%的堆积密度在10至150kg / m 3范围内的发泡塑料颗粒,C )1至50重量%的选自氨基树脂,酚醛树脂,具有至少两个异氰酸酯基的有机异氰酸酯或其混合物,任选与固化剂的粘合剂的粘合剂,以及D)0至68重量% 的添加剂,其中组分B)或原始可发泡塑料颗粒在膨胀之前,期间或之后用至少一种涂料涂覆。
Abstract:
The present invention relates to a method for the production of a particle based element, in particular a particle board or fiber board, wherein particles (2) are dispersed in a dispersing section (5) to form a particle mass (15), and a modification substance (13) is provided modifying the properties of the particle mass (15), such that particles (2) with accordingly modified properties are arranged in at least one predetermined region of the particle mass (15). The modification substance (13) is injected into the particles (2) before the particles (2) form the particle mass (15), wherein the modification substance (13) is injected into the particles (2) in an injection direction, which is inclined with respect to the flow direction (200) of the particle stream at the injection location. The invention further relates to an apparatus (1) for the production of a particle based element, a particle based element, and a further method for the production of a particle based element.