Abstract:
An aircraft and method to control flat yawing turns of the aircraft while maintaining a constant vector heading across a ground surface. The aircraft includes a control system in data communication with a model, a lateral control architecture, a longitudinal control architecture, and an initialization command logic. The model decouples the directional movement of the aircraft into a lateral equation of motion and a longitudinal equation of motion. The lateral control architecture utilizes the lateral equation of motion to control the aircraft in the lateral direction, while the longitudinal control architecture utilizes the longitudinal equation of motion to control the aircraft in the longitudinal direction. The initialization command logic selectively activates the lateral control architecture and the longitudinal control architecture.
Abstract:
A system includes a plurality of actuators and a control system operably associated with the plurality of actuators. The control system having a control logic architecture having a dynamic command input shaping model associated with an input command, a robust inner loop associated with the dynamic command input shaping model, and a time delay cancellation model. The method includes selecting a control law based upon a flight performance of an aircraft, decoupling the control law into a first individual component and a second individual component of the aircraft flight motion, analyzing each individual component separately, regrouping the component of flight motion, analyzing the control law with a time delay cancellation model and providing the necessary dynamic flight quickness with a different command input condition.
Abstract:
A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix. The method and apparatus also provide a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. The method and apparatus also provide a sensor management tool for providing input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators. An exemplary aircraft for using the method and apparatus of a reconfigurable flight control system is a quad tilt rotor. The quad tilt rotor provides a variety of redundant and back-actuators, as such, having a robust and highly qualified reconfigurable flight control system is very desirable.
Abstract:
A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix. The method and apparatus also provide a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. The method and apparatus also provide a sensor management tool for providing input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators. An exemplary aircraft for using the method and apparatus of a reconfigurable flight control system is a quad tilt rotor. The quad tilt rotor provides a variety of redundant and back-actuators, as such, having a robust and highly qualified reconfigurable flight control system is very desirable.
Abstract:
In some embodiments, a control manager is disposed between the rotor system and the flight control inceptor. The control manager is configured to receive control commands wirelessly from a ground control station, translate the control commands into one or more axes associated with the flight control inceptor, and transmit the translated control commands to the rotor system in place of the instructions received from the pilot via the flight control inceptor.
Abstract:
In some embodiments, a control manager is disposed between the rotor system and the flight control inceptor.The control manager is configured to receive control commands wirelessly from a ground control station, translate the control commands into one or more axes associated with the flight control inceptor, and transmit the translated control commands to the rotor system in place of the instructions received from the pilot via the flight control inceptor.
Abstract:
A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix. The method and apparatus also provide a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. The method and apparatus also provide a sensor management tool for providing input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators. An exemplary aircraft for using the method and apparatus of a reconfigurable flight control system is a quad tilt rotor. The quad tilt rotor provides a variety of redundant and back-actuators, as such, having a robust and highly qualified reconfigurable flight control system is very desirable.
Abstract:
A system includes a plurality of actuators and a control system operably associated with the plurality of actuators. The control system having a control logic architecture having a dynamic command input shaping model associated with an input command, a robust inner loop associated with the dynamic command input shaping model, and a time delay cancellation model. The method includes selecting a control law based upon a flight performance of an aircraft, decoupling the control law into a first individual component and a second individual component of the aircraft flight motion, analyzing each individual component separately, regrouping the component of flight motion, analyzing the control law with a time delay cancellation model and providing the necessary dynamic flight quickness with a different command input condition.