AUTOMATIC DETECTION OF AN ARTIFACT IN PATIENT IMAGE DATA

    公开(公告)号:US20190012805A1

    公开(公告)日:2019-01-10

    申请号:US16066551

    申请日:2016-02-29

    Applicant: Brainlab AG

    Abstract: A medical data processing method and system determines the position of an artifact in patient image data describing a set of tomographic slice images of an anatomical structure of a patient. The images are described by color Values. Color value difference data describing differences in color values for image elements in adjacent slice images is determined. At least one of positive or negative difference data, describing a subset of the differences and consisting of differences having a positive or negative value are determined. Smoothed difference data describing a smoothing of the differences contained in the positive or negative difference data are determined and, based on the positive or negative difference data and the smoothed difference data, artifact position data is determined describing the position of an artifact in the patient image data.

    Determination of Dynamic DRRs
    2.
    发明申请

    公开(公告)号:US20190043224A1

    公开(公告)日:2019-02-07

    申请号:US16075431

    申请日:2016-02-16

    Applicant: Brainlab AG

    Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.

    Determination of Registration Accuracy
    3.
    发明申请

    公开(公告)号:US20180315204A1

    公开(公告)日:2018-11-01

    申请号:US15764789

    申请日:2015-12-16

    Applicant: Brainlab AG

    CPC classification number: G06T7/0002 G06T3/0068 G06T7/30 G06T2207/30168

    Abstract: A medical data processing method, performed by a computer (2), for determining error analysis data describing the registration accuracy of a first elastic registration between first and second image data (A, B) describing images of an anatomical structure of a patient, comprising the steps of: —acquiring the first image data (A) describing a first image of the anatomical structure, —acquiring the second image data (B) describing a second image of the anatomical structure, —determining first registration data describing a first elastic registration of the first image data (A) to the second image data (B) by mapping the first image data (A) to the second image data (B) using a registration algorithm, —determining second registration data describing a second elastic registration of the second image data (B) to the first image data (A) by mapping the second image data (B) to the first image data (A) using the registration algorithm, —determining error analysis data describing the registration accuracy of the first elastic registration based on the first registration data and the second registration data.

    Determination of Dynamic DRRs
    4.
    发明公开

    公开(公告)号:US20230342992A1

    公开(公告)日:2023-10-26

    申请号:US18309968

    申请日:2023-05-01

    Applicant: Brainlab AG

    Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.

    Determination of Dynamic DRRs
    5.
    发明申请

    公开(公告)号:US20220189080A1

    公开(公告)日:2022-06-16

    申请号:US17573032

    申请日:2022-01-11

    Applicant: Brainlab AG

    Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.

Patent Agency Ranking