摘要:
A nanostructure includes (1) an inorganic nanoparticle core; (2) a first ligand, having a first chain length, bonded to the inorganic nanoparticle core; the first ligand having a charge; and (3) a second ligand, having a second chain length, bonded to the inorganic nanoparticle core; the second ligand is hydrophilic. The second chain length is longer than the first chain length such that varying a mole percent quantity of the first ligand does not substantially alter a hydrodynamic diameter of the nanostructure. Methods for making these nanostructures and their use in magnetic resonance imaging and management of inflammatory conditions are provided.
摘要:
A nanostructure includes a nanoparticle core (110) and a ligand (120) bonded to the nanoparticle core (110). The ligand includes a linking group (130) having a first end bonded to a polyethylene imine (PEI) polymer (140) and a second end bonded to the nanoparticle core (110) and a polyethylene glycol (PEG) polymer (150) grafted to the PEI polymer (140). Methods for making these nanostructures and their use in magnetic resonance imaging and management of inflammatory conditions are provided.
摘要:
Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites.
摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites.
摘要:
Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites.