Abstract:
Systems and methods presented herein provide for operating an optical network terminal (ONT) during a power outage. In one embodiment, an ONT includes an opto-electrical converter operable to receive an optical signal and to convert the optical signal to a data signal, and a data processing module operable to process data from the data signal. The ONT also includes a power management unit operable to detect a power outage of a power supply, to initiate a low power mode, to terminate a portion of data processing by the data processing module based on the low power mode, to convert the optical signal to electrical power, and to maintain operation of the low power mode utilizing the electrical power. The power management unit is further operable to monitor the power supply for restoration of power, and to reinitialize the data processing module upon restoration of power.
Abstract:
Multi-domain scheduling for subordinate networking is contemplated. The scheduling may include controlling a terminal to facilitate interfacing an Internet Protocol (IP) network with a point-to-multipoint (P2MP) network where the P2MP network includes one or more aggregating devices to facilitate interfacing signaling with devices/units associated with one or more subordinate P2MP networks.
Abstract:
Multi-domain scheduling for subordinate networking is contemplated. The scheduling may include controlling a terminal to facilitate interfacing an Internet Protocol (IP) network with a point-to-multipoint (P2MP) network where the P2MP network includes one or more aggregating devices to facilitate interfacing signaling with devices/units associated with one or more subordinate P2MP networks.
Abstract:
Multi-domain scheduling for subordinate networking is contemplated. The scheduling may include controlling a terminal to facilitate interfacing an Internet Protocol (IP) network with a point-to-multipoint (P2MP) network where the P2MP network includes one or more aggregating devices to facilitate interfacing signaling with devices/units associated with one or more subordinate P2MP networks.
Abstract:
An adaptive bit rate system for use in transmitting data at adaptable bit rates. The bit rate may be adjusted according to historical behaviors and/or past operational settings, such as but not limited to adjusting a requested bit rate to a different bit rate depending the historical behavior.
Abstract:
An adaptive bit rate system for use in transmitting data at adaptable bit rates. The bit rate may be adjusted according to historical behaviors and/or past operational settings, such as but not limited to adjusting a requested bit rate to a different bit rate depending the historical behavior.
Abstract:
Systems and methods presented herein provide for operating an optical network terminal (ONT) during a power outage. In one embodiment, an ONT includes an opto-electrical converter operable to receive an optical signal and to convert the optical signal to a data signal, and a data processing module operable to process data from the data signal. The ONT also includes a power management unit operable to detect a power outage of a power supply, to initiate a low power mode, to terminate a portion of data processing by the data processing module based on the low power mode, to convert the optical signal to electrical power, and to maintain operation of the low power mode utilizing the electrical power. The power management unit is further operable to monitor the power supply for restoration of power, and to reinitialize the data processing module upon restoration of power.