-
公开(公告)号:US20240169748A1
公开(公告)日:2024-05-23
申请号:US18391820
申请日:2023-12-21
Applicant: CARNEGIE MELLON UNIVERSITY
Inventor: JONATHAN CAGAN , PHILIP LeDUC , DANIEL CLYMER
IPC: G06V20/69 , G06F18/10 , G06F18/2135 , G06F18/214 , G06F18/241 , G06F18/2415 , G06T7/00
CPC classification number: G06V20/69 , G06F18/10 , G06F18/2135 , G06F18/2148 , G06F18/241 , G06F18/2415 , G06T7/0012 , G06V20/695 , G06V20/698 , G06T2207/10056 , G06T2207/20021 , G06T2207/20081 , G06T2207/30101 , G06V40/14 , G06V2201/031
Abstract: A hierarchical deep-learning object detection framework provides a method for identifying objects of interest in high-resolution, high pixel count images, wherein the objects of interest comprise a relatively a small pixel count when compared to the overall image. The method uses first deep-learning model to analyze the high pixel count images, in whole or as a patchwork, at a lower resolution to identify objects, and a second deep-learning model to analyze the objects at a higher resolution to classify the objects.