Abstract:
Drying and separation vibrating fluidized bed for processing wet coal by high-temperature hot air. Wet coal is fed into a vibrating separation chamber connected to a hot air supply duct. The wet coal is vibrated as it is dried and is layered as heat and mass transfer occur between the high-temperature air and the wet coal particles. Hot air enters the bottom of separation chamber through a distribution plate that includes asbestos fiber cloth sandwiched between clamping plates. The wet coal is fed through a feeding distribution device that separates the coal pieces as they enter the separation chamber. After the coal is dried and layered, the heavy and light material exits the separation chamber through two discharge impellers.
Abstract:
Provided is a gas-solid fluidized bed dry beneficiation process using a beneficiation density gradient, including: in a dry beneficiation system of a gas-solid fluidized bed, selecting coarse particles and fine particles; placing the coarse particles at a bottom of the dry beneficiation system, and placing the fine particles above the coarse particles, wherein the coarse particles and the fine particles are separated under an initial condition; under an effect of a gas flow, the coarse particles and the fine particles being fluidized to form a high-density beneficiation region and a low-density beneficiation region, respectively, and the coarse particles and the fine particles being mixed at a contact interface to form an intermediate-density beneficiation region; and feeding minerals to be beneficiated from an upper portion of the dry beneficiation system to pass through the low-density beneficiation region, the intermediate-density beneficiation region, and the high-density beneficiation region in sequence.
Abstract:
The present invention is directed towards a process for upgrading lignite comprising: prior to production pre-assess the calorific value of the coal, by selecting a relational expression between a calorific value of lignite and a degree of metamorphism, a moisture content and an ash content thereof based on a ratio of the ash content to the moisture content, pre-assess the calorific value of the coal; combining a relational expression between a production cost and the ash content and moisture content to make a cost budget; determining degrees of deashing and drying; selecting and implementing a lignite ash reduction pretreatment process; and implementing dry sorting first and then drying. The upgrading process has high sorting efficiency, high drying efficiency and low production cost, and meets the requirement for the surface moisture of the raw coal in the dry sorting operation.
Abstract:
Embodiments of the present disclosure provide a pressurized two-product dense-medium separation process for oil shale, and belongs to the field of oil shale industry, in particular to the processing and utilization of oil shale. This process includes: pre-screening a raw oil shale ore through a 25 mm screen; crushing an oversize product, mixing with an undersize product, and separating by a pressurized two-product dense-medium cyclone; and subjecting an underflow and an overflow of the pressurized two-product dense-medium cyclone to dewatering and medium draining respectively to obtain a concentrate and a tailing. The present disclosure has a simple process flow, high separation efficiency and low energy consumption and can reduce the cost of oil refining and achieve better economic benefits.
Abstract:
In the sorting bed, the material to be sorted enters into the pulsating hot air drying stage, and is dried and upgraded under the effect of air flow and high-temperature hot air, the material enters into the pulsating cold wind sorting stage under the effect of scraper conveyors which are parallely arranged up and down inside. The light products and heavy products sorted and layered are respectively conveyed to fine coal and gangue discharging outlets at both ends of the sorting machine. The float and hypostasis at the corresponding discharging ends are respectively discharged by light product discharging wheel and heavy product discharging wheel. At the discharging ends, the material is removed from the sorted light material and heavy material and the medium is purified and recycled to use through subsequent process. The dry sorted air containing vapor and dust is purified and recycled through a subsequent dust removal process.