NOX2 as a Biomarker of Radiotherapy Efficiency in Cancer Patients

    公开(公告)号:US20200181714A1

    公开(公告)日:2020-06-11

    申请号:US16333409

    申请日:2017-09-19

    IPC分类号: C12Q1/6886 C07K14/80

    摘要: Although tumor-associated macrophages have been extensively studied in the control of response to radiotherapy, the molecular mechanisms involved in the ionizing radiation-mediated activation of macrophages remain elusive. Here the present inventors show that ionizing radiation induces the expression of interferon-regulatory factor 5 (IRF5) promoting thus macrophage activation toward a pro-inflammatory phenotype. They reveal that the activation of the Ataxia telangiectasia mutated (ATM) kinase is required for ionizing radiation-elicited macrophage activation, but also for macrophage reprogramming after treatments with γ-interferon, lipopolysaccharide or chemotherapeutic agent (such as cis-platin), underscoring the fact that the kinase ATM plays a central role during macrophage phenotypic switching toward a proinflammatory phenotype. They further demonstrate that NADPH oxidase 2 (NOX2)-dependent ROS production is upstream to ATM activation and is essential during this process. They also report that hypoxic conditions and the inhibition of any component of this signaling pathway (NOX2, ROS and ATM) impairs pro-inflammatory activation of macrophages and predicts a poor tumor response to preoperative radiotherapy in locally advanced rectal cancer. Altogether, these results identify a novel signaling pathway involved in macrophage activation that may enhance effectiveness of radiotherapy through the re-programming of tumor infiltrating macrophages.

    P21 Expressing Monocytes for Cancer Cell Therapy

    公开(公告)号:US20220257709A1

    公开(公告)日:2022-08-18

    申请号:US17626360

    申请日:2020-07-17

    摘要: Identification of effective targets alleviating the programmed cell removal (PrCR) of tumor cells by macrophages is of very high interest. The present inventors have identified that the cyclin-dependent kinase inhibitor p21 protein is a strong regulator of the macrophage-mediated PrCR. Also, they showed that the adoptive transfer of p21 overexpressing monocytes induces macrophage PrCR and transition from an anti-inflammatory to a pro-inflammatory phenotype in vivo, delays cancer progression and increases significantly the overall survival of mice engrafted with cancer cells. The present invention therefore concerns therapeutic compositions comprising monocytes that over-express the cyclin-dependent kinase inhibitor p21 protein, and their use for treating mammals suffering from cancer, especially leukemia.