Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. The track joint assembly may also include a second link having a second bore. In addition, the track joint assembly may include a solid pin positioned at least partially within the first bore. The track joint assembly may also include a bushing positioned coaxially around the pin. The bushing may include an axial end portion disposed in the second bore. The second link may include a sealing portion surrounding an axial end of the axial end portion. The sealing portion may include material having a different wear resistance than material of another portion of the second link.
Abstract:
A thrust ring comprises a body including a cylindrical outer surface, a cylindrical inner surface, defining a central axis, an axial direction, a circumferential direction, a first axial end, a second axial end, and at least one recess on the first axial end, and at least one protrusion extending from the cylindrical inner surface toward the central axis.
Abstract:
Disclosed are various exemplary embodiments of a thrust ring for a track joint assembly. In one exemplary embodiment, the thrust ring may include a generally cylindrical outer surface. The thrust ring may also include a generally cylindrical inner surface including at least one protrusion extending toward a central axis of the thrust ring.
Abstract:
A track link for a ground-engaging track includes an elongate link body having a lower hardness material forming a lower mounting surface for mounting a track shoe, and a sacrificial higher hardness material forming an upper rail surface for contacting rotatable track engaging elements. The lower hardness and higher hardness materials transition at a material interface within the elongate link body, and the material interface is longitudinally non-uniform, such that the sacrificial higher hardness material has a varying depth from the upper rail surface to retard scalloping.
Abstract:
A roller of an undercarriage track system for a machine is disclosed. The roller includes a body and a sensed feature. The body is a solid of revolution formed about a roller axis. The body includes a bore surface and a roller contact surface. The bore surface defines a bore extending through the body. The bore surface is a radially inner surface of the body. The roller contact surface is located outward from the bore surface. The sensed feature is located at the body. The sensed feature is configured to rotate with the body and to be detectable by a sensor.
Abstract:
Systems and methods are disclosed for determining part wear using a mobile device. One such exemplary method includes capturing, using the mobile device, at least one digital image of a wear part of a machine. The method further includes determining, by the mobile device and based on the at least one digital image, a degree of wear of the wear part.
Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. The track joint assembly may also include a second link having a second bore including first and second portions. The first and second portions may have different diameters. In addition, the track joint assembly may include a solid pin positioned at least partially within the first bore. The track joint may also include a bushing positioned coaxially around the pin. The bushing may include an axial end portion disposed in and contacting the first portion of the second bore. The bushing may also include an axial end-adjacent portion disposed in and contacting the second portion of the second bore. An outer diameter of the end-adjacent portion may be larger than an outer diameter of the end portion.
Abstract:
A track link having a wear sensing device is disclosed. The track link may include a link body including a surface, a cavity, and at least one hole configured to receive a track pin. The track link may further include the wear sensing device positioned in the cavity. The wear sensing device may be configured to generate a signal indicative of a wear parameter of the surface. The track link may further include a containment mechanism configured to secure the wear sensing device in position inside the cavity.