Abstract:
An articulated chain assembly includes standard links, a master link, and pins pivotably coupling together the standard links and master link. The master link includes a first half link and a second half link, and bolt holes extending through the first half link and the second half link. A first bolt is within a first one of the bolt holes and has a necked-down bolt shank defining a lesser necked-down axial length. A second bolt is within a second one of the bolt holes and includes a necked-down bolt shank defining a greater necked-down axial length. The first bolt and second bolt may have unequal full axial lengths.
Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. The track joint assembly may also include a second link having a second bore. In addition, the track joint assembly may include a solid pin positioned at least partially within the first bore. The track joint assembly may also include a bushing positioned coaxially around the pin. The bushing may include an axial end portion disposed in the second bore. The second link may include a sealing portion surrounding an axial end of the axial end portion. The sealing portion may include material having a different wear resistance than material of another portion of the second link.
Abstract:
A ground-engaging track includes a track chain formed of standard links and at least one master link. The master link include a first half link and a second half link, clamped together by way of a forward bolt and a rearward bolt. Clamping surfaces of the first half link and the second half link form a first tooth set and a second tooth set, respectively, which may include a total of 2 or 3 full teeth and tooth roots, confined in distribution between a forward bolt hole and a rearward bolt hole.
Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. The track joint assembly may also include a second link having a second bore including first and second portions. The first and second portions may have different diameters. In addition, the track joint assembly may include a solid pin positioned at least partially within the first bore. The track joint may also include a bushing positioned coaxially around the pin. The bushing may include an axial end portion disposed in and contacting the first portion of the second bore. The bushing may also include an axial end-adjacent portion disposed in and contacting the second portion of the second bore. An outer diameter of the end-adjacent portion may be larger than an outer diameter of the end portion.
Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. Additionally, the track joint assembly may include a second link having a second bore. The track joint assembly may also include a bushing. The bushing may include a first axial end portion disposed in the first bore. In addition, the bushing may include a second axial end portion disposed in the second bore. The track joint assembly may also include a seal assembly positioned at an axial end of the first axial end portion. The seal assembly may contact the first link at a seal-link interface.
Abstract:
An articulated chain assembly includes standard links, a master link, and pins pivotably coupling together the standard links and master link. The master link includes a first half link and a second half link, and bolt holes extending through the first half link and the second half link. A first bolt is within a first one of the bolt holes and has a necked-down bolt shank defining a lesser necked-down axial length. A second bolt is within a second one of the bolt holes and includes a necked-down bolt shank defining a greater necked-down axial length. The first bolt and second bolt may have unequal full axial lengths.
Abstract:
Disclosed are various exemplary embodiments of a thrust ring for a track joint assembly. In one exemplary embodiment, the thrust ring may include a generally cylindrical outer surface. The thrust ring may also include a generally cylindrical inner surface including at least one protrusion extending toward a central axis of the thrust ring.
Abstract:
A track link for a ground-engaging track includes an elongate link body having a lower hardness material forming a lower mounting surface for mounting a track shoe, and a sacrificial higher hardness material forming an upper rail surface for contacting rotatable track engaging elements. The lower hardness and higher hardness materials transition at a material interface within the elongate link body, and the material interface is longitudinally non-uniform, such that the sacrificial higher hardness material has a varying depth from the upper rail surface to retard scalloping.
Abstract:
A ground-engaging track includes a track chain formed of standard links and at least one master link. The master link include a first half link and a second half link, clamped together by way of a forward bolt and a rearward bolt. Clamping surfaces of the first half link and the second half link form a first tooth set and a second tooth set, respectively, which may include a total of 2 or 3 full teeth and tooth roots, confined in distribution between a forward bolt hole and a rearward bolt hole.
Abstract:
Disclosed are various exemplary embodiments of a track joint assembly. In one exemplary embodiment, the track joint assembly may include a first link having a first bore. The track joint assembly may also include a second link having a second bore. In addition, the track joint assembly may include a solid pin positioned at least partially within the first bore. The track joint assembly may also include a bushing positioned coaxially around the pin. The bushing may include an axial end portion disposed in the second bore. The second link may include a sealing portion surrounding an axial end of the axial end portion. The sealing portion may include material having a different wear resistance than material of another portion of the second link.