摘要:
The present invention discloses a fault localization method and a fault localization apparatus in a Passive Optical Network (PON) and a passive optical network having the same.A fault localization method in PON according to the present invention comprises a) configuring an optical path of a remote node (RN) selectively by electric power being fed temporarily only when necessary, while the PON is regularly being operated as a passive network; and b) detecting a fault occurring on the selectively configured optical path by inserting a monitoring signal of an OTDR unit, which is positioned in a central office (CO), through the selectively configured optical path.
摘要:
The present invention discloses a transmission device of a low-noise optical signal having a low-noise multi-wavelength light source, a transmission device of broadcast signals using a low-noise multi-wavelength light source, and an optical access network having the same.The present invention uses a low-noise multi-wavelength light source (LMLS) which has sufficiently low noises at respective wavelengths, while being lasing at a multi-wavelength. Noises at respective wavelengths are not increased, even though an output light of such an LMLS passes through a wavelength division multiplexer/demultiplexer (a tunable optical filter or an arrayed waveguide grating (AWG), etc.). When using an LMLS, it is possible to embody an optical access network capable of transmitting optical signals at a high-speed and simultaneously transmitting a multicast signal. Further, when embodying an optical amplifier by using a gain medium for an LMLS, it is possible to obtain gain at a broad band without cross-coupling.
摘要:
An optical source for wavelength division multiplexed optical network according to the present invention comprises a broadband light source (BLS); an arrayed waveguide grating (AWG) for spectrum-dividing incoherent light outputted from the BLS; a circulator being connected between the BLS and the AWG; and a plurality of un-polarized light sources (UPLS) being respectively connected to the AWG, wherein the incoherent light which is spectrum-divided by the AWG is injected into the plurality of UPLS and thus the plurality of UPLS is wavelength-locked thereto. In case of using an optical source for wavelength division multiplexed optical network and a wavelength division multiplexed-passive optical network having the same according to the present invention. It is especially possible to lower dramatically the power of incoherent light being injected into a wavelength-locked Fabry-Perot laser diode, while to enable a high transmission speed of 1.25 Gb/s or more, and possible to further lower noise intensity of a light source at given power of the incoherent light.
摘要:
The present invention discloses a remote node (RN) configuration for providing an enhanced service in a passive optical network and a passive optical network (PON) having the same. In an RN configuration for providing a new service in a PON according to the present invention, it is possible to configure the RN remotely by instantaneous powering from a remote site only when necessary, while the RN being operated as a PON at ordinary times. More specifically, an RN configuration for providing a new service in a PON according to the present invention includes a power generation block capable of providing energy necessary for activating the RN by instantaneously supplied power from the remote site. Further, an RN according to the present invention further includes either one or both of a control agent block capable of controlling and managing optical paths of the RN by using power generated from the power generation block; and a reconfigurable switching block capable of configuring and switching the optical path of the RN through the power being provided from the power generation block and a control by the control agent block.
摘要:
The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sharing the SMF; a second apparatus for combining and splitting wavelength bands being positioned at a front terminal of the splitter; and an arrayed waveguide grating (AWG) being connected to the second apparatus for combining and splitting wavelength bands within the RN, and being connected to a second group of one or more ONTs by a second group of one or more distribution fibers within the RN or within another RN which is located in a position different from the RN.
摘要:
The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sharing the SMF; a second apparatus for combining and splitting wavelength bands being positioned at a front terminal of the splitter; and an arrayed waveguide grating (AWG) being connected to the second apparatus for combining and splitting wavelength bands within the RN, and being connected to a second group of one or more ONTs by a second group of one or more distribution fibers within the RN or within another RN which is located in a position different from the RN.