Isolation and segmentation in multi-cloud interconnects

    公开(公告)号:US11082258B1

    公开(公告)日:2021-08-03

    申请号:US16742604

    申请日:2020-01-14

    Abstract: Techniques for maintaining isolation and segregation for network paths through multi-cloud fabrics using VRF technologies. The techniques include running virtual routers in a cloud network that connect the cloud network to an on-premises network using a network overlay that preserves VRF information in data packets. Further, the virtual routers connect to individual gateways in the cloud network using tunnels, and each individual gateway is connected to multiple VPCs without overlapping subnets. The virtual routers may assign a sink VRF to each gateway connection that can be used to perform source-IP based VRF selection by mapping source IP addresses in each tunnel connection to appropriate VRFs for the source IP addresses. In this way, virtual routers may use sink VRFs to translate into the VRF information for data packets from the VPCs via source-IP based lookup, and use the corresponding VRF route table to determine next hops for data packets.

    Isolation and Segmentation in Multi-Cloud Interconnects

    公开(公告)号:US20210218598A1

    公开(公告)日:2021-07-15

    申请号:US16742604

    申请日:2020-01-14

    Abstract: Techniques for maintaining isolation and segregation for network paths through multi-cloud fabrics using VRF technologies. The techniques include running virtual routers in a cloud network that connect the cloud network to an on-premises network using a network overlay that preserves VRF information in data packets. Further, the virtual routers connect to individual gateways in the cloud network using tunnels, and each individual gateway is connected to multiple VPCs without overlapping subnets. The virtual routers may assign a sink VRF to each gateway connection that can be used to perform source-IP based VRF selection by mapping source IP addresses in each tunnel connection to appropriate VRFs for the source IP addresses. In this way, virtual routers may use sink VRFs to translate into the VRF information for data packets from the VPCs via source-IP based lookup, and use the corresponding VRF route table to determine next hops for data packets.

    Specifying routes to enable Layer-2 mobility in hybrid-cloud environments

    公开(公告)号:US12267240B2

    公开(公告)日:2025-04-01

    申请号:US18656479

    申请日:2024-05-06

    Abstract: Techniques for using more-specific routing to perform scalable Layer-2 (L2) stretching of subnets across hybrid-cloud environments. Routing tables in a public cloud may allow for routes that are more specific than the default local route, and the more-specific routes may be used to send all traffic to a dedicated, cloud router. The more-specific routes are set up for a VPC where a subnet resides such that the more specific-routes cover at least a portion of subnet range. The next hop for the more-specific routes point to the cloud router which is capable of doing host routing and segmentation extension. Thus, traffic originating from endpoints in a VPC is routed to the cloud router, and the cloud router determines whether the traffic is to be re-routed back to a destination endpoint in the VPC (or another cloud location), or sent to a destination endpoint residing in the on-premises site.

    VRF SEGREGATION FOR SHARED SERVICES IN MULTI-FABRIC CLOUD NETWORKS

    公开(公告)号:US20210266255A1

    公开(公告)日:2021-08-26

    申请号:US16799476

    申请日:2020-02-24

    Abstract: Techniques for maintaining virtual routing and forwarding (VRF) segregation for network paths through multi-cloud fabrics that utilize shared services, e.g., application load balancers. The router of a first network of a multi-cloud fabric receives a first data packet from a source end-point group within the first network and forwards the first data packet to a service end-point group. The service end-point group may forward the first data packet to a destination end-point group of a second network of the multi-cloud fabric. The service end-point group may receive a second data packet from the destination end-point group and forward the second data packet to the router. Based on one of (i) an identity of the service end-point group or (ii) an address of the source end-point group, a VRF may be identified and the second data packet may be forwarded by the router to the source end-point group using the VRF.

Patent Agency Ranking