Abstract:
Methods, devices, and computer-readable medium for preventing broadcast looping during a site merge are described herein. An example method can include detecting a site merge between a plurality of layer 2 (L2) networks using a spanning tree protocol (STP), blocking a data traffic port connecting the L2 networks in response to detecting the site merge, and performing an STP-Ethernet virtual private network (EVPN) handshake. The STP-EVPN handshake can include changing a root bridge in one of the L2 networks. Thereafter, the method can include unblocking the data traffic port connecting the L2 networks. In other words, the data traffic port connecting the L2 networks can be unblocked after changing the root bridge in the one of the L2 networks.
Abstract:
In one embodiment, an authoritative edge device (AED)-server in a computer network maintains assignment of an active AED for a particular virtual local area network (VLAN), and in response to a triggered re-assignment, sends an AED change request identifying an old active AED for the particular VLAN and a new active AED for the particular VLAN (e.g., and/or corresponding backups). In response to receiving the change request, the old active AED ceases forwarding of traffic for the particular VLAN and transmits a relinquishment confirmation into the network. Also, in response to receiving the change request and the relinquishment confirmation from the old active AED, the new active AED assumes responsibility for traffic forwarding for the particular VLAN and transmits an activation confirmation into the network. The change request is then deemed completed by the AED-sever upon receipt of both the relinquishment confirmation and the activation confirmation.
Abstract:
In one embodiment, an authoritative edge device (AED)-server in a computer network maintains assignment of an active AED for a particular virtual local area network (VLAN), and in response to a triggered re-assignment, sends an AED change request identifying an old active AED for the particular VLAN and a new active AED for the particular VLAN (e.g., and/or corresponding backups). In response to receiving the change request, the old active AED ceases forwarding of traffic for the particular VLAN and transmits a relinquishment confirmation into the network. Also, in response to receiving the change request and the relinquishment confirmation from the old active AED, the new active AED assumes responsibility for traffic forwarding for the particular VLAN and transmits an activation confirmation into the network. The change request is then deemed completed by the AED-sever upon receipt of both the relinquishment confirmation and the activation confirmation.
Abstract:
Techniques are presented herein for optimizing traffic routing in overlay networks. At a first edge device located at a first site in a network, a message is received that indicates address information of a network device. The address information of the network device is stored in an address table. The address information is associated with a site identifier that identifies a second site at which the network device is located. The site identifier is mapped to an identifier associated with a second edge device that is responsible for routing traffic to network devices at the second site.
Abstract:
Methods, devices, and computer-readable medium for preventing broadcast looping during a site merge are described herein. An example method can include detecting a site merge between a plurality of layer 2 (L2) networks using a spanning tree protocol (STP), blocking a data traffic port connecting the L2 networks in response to detecting the site merge, and performing an STP-Ethernet virtual private network (EVPN) handshake. The STP-EVPN handshake can include changing a root bridge in one of the L2 networks. Thereafter, the method can include unblocking the data traffic port connecting the L2 networks. In other words, the data traffic port connecting the L2 networks can be unblocked after changing the root bridge in the one of the L2 networks.
Abstract:
In one embodiment, an authoritative edge device (AED)-server in a computer network maintains assignment of an active AED for a particular virtual local area network (VLAN), and in response to a triggered re-assignment, sends an AED change request identifying an old active AED for the particular VLAN and a new active AED for the particular VLAN (e.g., and/or corresponding backups). In response to receiving the change request, the old active AED ceases forwarding of traffic for the particular VLAN and transmits a relinquishment confirmation into the network. Also, in response to receiving the change request and the relinquishment confirmation from the old active AED, the new active AED assumes responsibility for traffic forwarding for the particular VLAN and transmits an activation confirmation into the network. The change request is then deemed completed by the AED-sever upon receipt of both the relinquishment confirmation and the activation confirmation.
Abstract:
In one embodiment, an authoritative edge device (AED)-server in a computer network maintains assignment of an active AED for a particular virtual local area network (VLAN), and in response to a triggered re-assignment, sends an AED change request identifying an old active AED for the particular VLAN and a new active AED for the particular VLAN (e.g., and/or corresponding backups). In response to receiving the change request, the old active AED ceases forwarding of traffic for the particular VLAN and transmits a relinquishment confirmation into the network. Also, in response to receiving the change request and the relinquishment confirmation from the old active AED, the new active AED assumes responsibility for traffic forwarding for the particular VLAN and transmits an activation confirmation into the network. The change request is then deemed completed by the AED-sever upon receipt of both the relinquishment confirmation and the activation confirmation.
Abstract:
Techniques are presented herein for optimizing traffic routing in overlay networks. At a first edge device located at a first site in a network, a message is received that indicates address information of a network device. The address information of the network device is stored in an address table. The address information is associated with a site identifier that identifies a second site at which the network device is located. The site identifier is mapped to an identifier associated with a second edge device that is responsible for routing traffic to network devices at the second site.