FILTERS INCLUDING BANDPASS FILTER TRANSMISSION LINES

    公开(公告)号:US20220294483A1

    公开(公告)日:2022-09-15

    申请号:US17690182

    申请日:2022-03-09

    Abstract: Filters include a housing having an input port and an output port and a plurality of resonant cavities within the housing. Each resonant cavity may include a respective notch resonator. The filter may further include a bandpass filter that includes a plurality of bandpass resonators, the bandpass filter extending between the input port and the output port. The bandpass filter may replace a transmission line that is included in conventional filters.

    In-line filter having mutually compensating inductive and capacitive coupling

    公开(公告)号:US11024931B2

    公开(公告)日:2021-06-01

    申请号:US16846614

    申请日:2020-04-13

    Abstract: An in-line resonator filter has a linear array of three or more conductors. A first pair of adjacent conductors has inductive main coupling and oppositely signed capacitive main coupling, while a second pair of non-adjacent conductors has inductive cross-coupling. The first and second pairs have one conductor in common. Between the second pair of non-adjacent conductors, there is no direct ohmic connection that provides the corresponding inductive cross-coupling. The oppositely signed capacitive main coupling compensates for at least a portion of the inductive main coupling between the first pair of adjacent conductors. The in-line resonator filter is able to provide one or more transmission zeros without requiring any discrete bypass connectors that provide direct ohmic connection between pairs of non-adjacent conductors. As such, the in-line resonator filters can be smaller, less complex, and less susceptible to damage.

    IN-LINE FILTER HAVING MUTUALLY COMPENSATING INDUCTIVE AND CAPACITIVE COUPLING

    公开(公告)号:US20190165440A1

    公开(公告)日:2019-05-30

    申请号:US16257124

    申请日:2019-01-25

    Abstract: An in-line resonator filter has a linear array of three or more conductors. A first pair of adjacent conductors has inductive main coupling and oppositely signed capacitive main coupling, while a second pair of non-adjacent conductors has inductive cross-coupling. The first and second pairs have one conductor in common. Between the second pair of non-adjacent conductors, there is no direct ohmic connection that provides the corresponding inductive cross-coupling. The oppositely signed capacitive main coupling compensates for at least a portion of the inductive main coupling between the first pair of adjacent conductors. The in-line resonator filter is able to provide one or more transmission zeros without requiring any discrete bypass connectors that provide direct ohmic connection between pairs of non-adjacent conductors. As such, the in-line resonator filters can be smaller, less complex, and less susceptible to damage.

    In-line filter having mutually compensating inductive and capacitive coupling

    公开(公告)号:US10236550B2

    公开(公告)日:2019-03-19

    申请号:US15529775

    申请日:2015-07-10

    Abstract: An in-line resonator filter has a linear array of three or more conductors. A first pair of adjacent conductors has inductive main coupling and oppositely signed capacitive main coupling, while a second pair of non-adjacent conductors has inductive cross-coupling. The first and second pairs have one conductor in common. Between the second pair of non-adjacent conductors, there is no direct ohmic connection that provides the corresponding inductive cross-coupling. The oppositely signed capacitive main coupling compensates for at least a portion of the inductive main coupling between the first pair of adjacent conductors. The in-line resonator filter is able to provide one or more transmission zeros without requiring any discrete bypass connectors that provide direct ohmic connection between pairs of non-adjacent conductors. As such, the in-line resonator filters can be smaller, less complex, and less susceptible to damage.

    In-line filter having mutually compensating inductive and capacitive coupling

    公开(公告)号:US10658722B2

    公开(公告)日:2020-05-19

    申请号:US16257124

    申请日:2019-01-25

    Abstract: An in-line resonator filter has a linear array of three or more conductors. A first pair of adjacent conductors has inductive main coupling and oppositely signed capacitive main coupling, while a second pair of non-adjacent conductors has inductive cross-coupling. The first and second pairs have one conductor in common. Between the second pair of non-adjacent conductors, there is no direct ohmic connection that provides the corresponding inductive cross-coupling. The oppositely signed capacitive main coupling compensates for at least a portion of the inductive main coupling between the first pair of adjacent conductors. The in-line resonator filter is able to provide one or more transmission zeros without requiring any discrete bypass connectors that provide direct ohmic connection between pairs of non-adjacent conductors. As such, the in-line resonator filters can be smaller, less complex, and less susceptible to damage.

    Same-band combiner for co-sited base stations

    公开(公告)号:US09755292B2

    公开(公告)日:2017-09-05

    申请号:US15117839

    申请日:2015-04-13

    Inventor: Stefano Tamiazzo

    Abstract: The invention is a compact three-port signal combiner suitable for use in a base station having two different wireless systems. The combiner is designed as a four-port network, but one of the ports is terminated with a predetermined load, thus leaving three ports for connection to user equipment. A first port (A) receives from an antenna a first input signal comprising first and second receive bands and transmits to the antenna a first output signal comprising a transmit band. A second port (R), connected to the first wireless system, outputs to the first wireless system a second output signal comprising the first and second receive bands. A third port (T\R) outputs, to the second wireless system, a third output signal comprising the first and second receive bands and receives from the second wireless system a second input signal that is to be transmitted from the first port.

Patent Agency Ranking