Abstract:
A method is provided for forming a highly active Fischer-Tropsch catalyst using boehmite having a particular crystallite size. In this method, a support material comprising boehmite is contacted with a catalytic metal-containing compound to form a catalyst precursor. The boehmite is selected to have an average crystallite size in the range of from about 6 nanometers (nm) to about 30 nm. An alternate embodiment uses a mixture of boehmites with various average crystallite sizes in the range of from about 4 nm to about 30 nm, differing by at least by 1 nm. Subsequently, the catalyst precursor is calcined to convert the boehmite to a stabilized aluminum oxide structure, thereby forming a catalyst support having a good attrition resistance and a relatively high hydrothermal stability.
Abstract:
This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
Abstract:
Methods are disclosed for preparing hydrothermally-stable structurally-promoted refractory-oxide catalyst supports, which includes mixing precursors of the refractory oxide and of at least one structural promoter and calcining the mixture. The methods feature the incorporation of at least one structural promoter into the lattice of a refractory-oxide material such as alumina. The hydrothermally-stable structurally-promoted refractory-oxide catalyst supports are useful in hydrothermal catalytic processes such as Fischer-Tropsch reactions.
Abstract:
A hydrothermally-stable catalyst, method for making the same, and process for producing hydrocarbon, wherein the catalyst is used in synthesis gas conversion to hydrocarbons. In one embodiment, the method comprises depositing a compound of a catalytic metal selected from Groups 8, 9, and 10 of the Periodic Table on a support material comprising boehmite to form a composite material; and calcining the composite material to form the catalyst. In other embodiments, the support material comprises synthetic boehmite, natural boehmite, pseudo-boehmite, or combinations thereof.