Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the jacket. The strength member is disposed inside the jacket. Seismic sensors are disposed at spaced apart locations along the interior of the jacket. An acoustically transparent material fills the space inside the jacket. The material is introduced into the inside of the jacket in liquid form and undergoes a state change upon exposure to radiation. The radiation in one embodiment is ultraviolet radiation. The radiation in one embodiment is electron beam radiation.
Abstract:
A method and system for interrogating a seismic sensor in a seismic cable having modular sensing stations spaced along the seismic cable and a connection module head end of the sensor sections, that includes dropping, at the connection modules, a wavelength of light from an input bus telemetry fiber that includes multiple wavelengths of light, distributing the dropped wavelength of light to the seismic sensor, returning the dropped wavelength from the seismic sensor to a return telemetry fiber, remultiplexing the dropped wavelength of light onto the return bus telemetry, and amplifying, in the seismic cable, the returned dropped wavelength.
Abstract:
A method for attaching seismic sensors in a seismic cable that includes a strength member inside a cable jacket with a fiber tube wound around the strength member and a sensor station base attached around the cable wherein the jacket is removed, at least one fiber tube is extracted and a seismic sensor is attached to the fiber tube.
Abstract:
An optical accelerometer includes a beam and at least one optical fiber affixed to one side of the beam such that deflection of the beam changes a length of the optical fiber. Means for sensing the change in length of the optical fiber is functionally coupled to the at least one fiber. A seismic sensor system includes at least two accelerometers, oriented such that their sensitive axes are at least partially aligned along mutually orthogonal directions. Each accelerometer includes a beam, and at least one optical fiber affixed to one side of the beam such that deflection of the beam changes a length of the at least one optical fiber. Means for sensing the change in length of the optical fiber is functionally coupled to at least one fiber of each accelerometer.