Abstract:
A method for determining a reduction factor of a bearing capacity of an axial load cylindrical shell structure relates to stability checking of main bearing strength thin-walled members of aerospace and architectural structures. Different from experiment experience-based conventional defect sensitivity evaluating method represented by NASA SP-8007, a depression defect is introduced in a manner of applying a radial disturbance load. First, an influence rule of a depression defect amplitude of a single point to an axial load bearing capacity is analyzed by using numerical values, so as to determine a load amplitude range; then, defect sensitivity analysis is performed on depression defects of multiple points; then, experiment design sampling is performed by using load amplitude values and load position distribution as design variables; and finally, based on optimizing technologies such as an enumeration method, a genetic algorithm and a surrogate model, the most disadvantageous disturbance load of the multiple points that limits the defect amplitude is searched for, and a reduction factor of the bearing capacity of the axial load cylindrical shell structure is determined, so as to establish a more physical method for evaluating the defect sensitivity and the bearing performance of the axial load cylindrical shell structure.