Abstract:
A method for establishing a geometrical imperfection database of aerospace thin-walled structures is disclosed. The method comprises the following steps: 1) design the shell quality inspection card that is suitable and convenient to measure the geometrical imperfections for field workers. Obtain the parameters and geometrical imperfections of shells by filling data of measurement points in the shell quality inspection card; 2) perform characteristics combing, mathematical description and component analysis for the geometrical imperfections obtained in the first step; 3) collect and analyze the geometrical imperfection information of multiple aerospace thin-walled shells and establish the geometrical imperfection database based on the first step and second step. The method will effectively serve the development of aerospace equipment, shorten the design cycle and provide guidance and specifications for the design of the thin-walled components carrying main load.
Abstract:
A method for determining a reduction factor of a bearing capacity of an axial load cylindrical shell structure relates to stability checking of main bearing strength thin-walled members of aerospace and architectural structures. Different from experiment experience-based conventional defect sensitivity evaluating method represented by NASA SP-8007, a depression defect is introduced in a manner of applying a radial disturbance load. First, an influence rule of a depression defect amplitude of a single point to an axial load bearing capacity is analyzed by using numerical values, so as to determine a load amplitude range; then, defect sensitivity analysis is performed on depression defects of multiple points; then, experiment design sampling is performed by using load amplitude values and load position distribution as design variables; and finally, based on optimizing technologies such as an enumeration method, a genetic algorithm and a surrogate model, the most disadvantageous disturbance load of the multiple points that limits the defect amplitude is searched for, and a reduction factor of the bearing capacity of the axial load cylindrical shell structure is determined, so as to establish a more physical method for evaluating the defect sensitivity and the bearing performance of the axial load cylindrical shell structure.