Abstract:
In an example embodiment, an apparatus, comprising a first wireless transceiver, a first directional antenna coupled to the first wireless transceiver, a second wireless transceiver, a second directional antenna coupled to the second wireless transceiver, and control logic coupled to the first wireless transceiver and the second wireless transceiver. The first wireless transceiver and second wireless transceiver can concurrently receive wireless signals that are spatially separated. The first wireless transceiver asserts a signal while communicating with another wireless device. The control logic is configured to prevent the second wireless transceiver from transmitting while the first wireless transceiver is asserting the signal.
Abstract:
In an example embodiment, an apparatus, comprising a first wireless transceiver, a first directional antenna coupled to the first wireless transceiver, a second wireless transceiver, a second directional antenna coupled to the second wireless transceiver, and control logic coupled to the first wireless transceiver and the second wireless transceiver. The first wireless transceiver and second wireless transceiver can concurrently receive wireless signals that are spatially separated. The first wireless transceiver asserts a signal while communicating with another wireless device. The control logic is configured to prevent the second wireless transceiver from 10 transmitting while the first wireless transceiver is asserting the signal.
Abstract:
A method for controlling cell size associated with an access point that has a receive sensitivity and an output power. The method includes changing a start of packet threshold and/or a clear channel assessment threshold to vary the cell size of the access point.
Abstract:
A method for controlling cell size associated with an access point that has a receive sensitivity and an output power. The method includes changing a start of packet threshold and/or a clear channel assessment threshold to vary the cell size of the access point.
Abstract:
An adaptive bias control scheme for an Orthogonal Frequency Division Multiplex (“OFDM”) transmitter. The transmitter chain is comprised of class A amplifiers. The amplifiers in the transmit chain are backed off from P1dB to ensure linear amplification of the signal. Amplifier back off is defined as (Amplifier P1dB) minus (Average Signal Power). Since the efficiency of the amplifier decreases in direct proportion, to the back off, it is desirable to minimize back off while maintaining linearity. The back off is dependent on the peak to average power ratio (“PAPR”) of the OFDM waveform. The PAPR is measured on a symbol by symbol basis and the amplifier P1dB is adjusted in proportion to the PAPR of the symbol, maintaining a P1dB sufficient to provide the required back off dictated by the maximum PAPR of the OFDM waveform, but can be lowered for symbols with PAPR below the maximum. The average operating point of the amplifiers is reduced by the adaptive bias control on a symbol-by-symbol basis.
Abstract:
In an example embodiment, an apparatus, comprising a first wireless transceiver, a first directional antenna coupled to the first wireless transceiver, a second wireless transceiver, a second directional antenna coupled to the second wireless transceiver, and control logic coupled to the first wireless transceiver and the second wireless transceiver. The first wireless transceiver and second wireless transceiver can concurrently receive wireless signals that are spatially separated. The first wireless transceiver asserts a signal while communicating with another wireless device. The control logic is configured to prevent the second wireless transceiver from transmitting while the first wireless transceiver is asserting the signal.
Abstract:
In an example embodiment, an apparatus, comprising a first wireless transceiver, a first directional antenna coupled to the first wireless transceiver, a second wireless transceiver, a second directional antenna coupled to the second wireless transceiver, and control logic coupled to the first wireless transceiver and the second wireless transceiver. The first wireless transceiver and second wireless transceiver can concurrently receive wireless signals that are spatially separated. The first wireless transceiver asserts a signal while communicating with another wireless device. The control logic is configured to prevent the second wireless transceiver from transmitting while the first wireless transceiver is asserting the signal.
Abstract:
A method to adjust either the detection sensitivity threshold (e.g., the clear channel assessment (CCA) for an 802.11 complaint wireless transceiver) and/or the receiver communication sensitivity threshold (e.g., the start of packet (SOP) for an 802.11 complaint wireless transceiver) to improve performance in a wireless networking environment, such as a high density environment. Both the detection cell and the communication cell can be set equal to each other or the detection cell and communication cell can be independently set. There are also described herein techniques for determining detection cell. Also described herein are techniques for determining communication cell. The present invention includes apparatuses configured to implement a method and/or technique described herein.