Abstract:
The piston for a magneto-rheological fluid system is manufactured from a piston skirt of a material having a high magnetic permeability and a piston plate which closes one end of the piston skirt having a low magnetic permeability and therefore must be made out of a material such as stainless steel. The piston is manufactured by placing the plate on one electrode and clamping another set of electrodes against the outer circumferential surface of the piston ring or skirt. The plate and ring are brought into contact with one another while applying a current through the piston ring and the piston plate, thereby heating interfering portions of the ring and plate and permitting the plate to be forced inside of the ring while at the same time allowing the softened or plastic portions of the ring and plate to intermingle with one another and thus form a solid state bond.
Abstract:
A magneto-rheological damping device comprises a core element for carrying a magnetic flux and a magnetic flux generator positioned adjacent to a portion of the core element and operable to generate a magnetic flux in the core element. A sleeve is positioned over the core element and magnetic flux generator and includes a plurality of protrusions extending generally radially outwardly from a center of the core element. A flux ring surrounds the core element and sleeve and defining a passage between flux ring and core element for the flow of a magneto-rheological fluid. The sleeve protrusions are configured to engage the flux ring and secure the flux ring in a concentric position around the core element and sleeve.