Abstract:
Example embodiments disclosed herein relate to perception based multimedia processing. There is provided a method for processing multimedia data, the method includes automatically determining user perception on a segment of the multimedia data based on a plurality of clusters, the plurality of clusters obtained in association with predefined user perceptions and processing the segment of the multimedia data at least in part based on determined user perception on the segment. Corresponding system and computer program products are disclosed as well.
Abstract:
A method for creating a head-related impulse response (HRIR) for use in rendering audio for playback through headphones comprises receiving location parameters for a sound including azimuth, elevation, and range relative to a head of a listener, applying a spherical head model to the azimuth, elevation, and range input parameters to generate binaural HRIR values, computing a pinna model using the azimuth and elevation parameters to apply to the binaural HRIR values to pinna modeled HRIR values, computing a torso model using the azimuth and elevation parameters to apply to the pinna modeled HRIR values to generate pinna and torso modeled HRIR values, and computing a near-field model using the azimuth and range parameters to apply to the pinna and torso modeled HRIR values to generate pinna, torso and near-field modeled HRIR values.
Abstract:
In some embodiments, a method for embedding data (e.g., metadata for use during post-processing) in a stereo audio signal comprising frames. Each of the frames has a saturation value, and data are embedded in the stereo audio signal by modifying the signal to generate a modulated stereo audio signal comprising a sequence of modulated frames having modulated saturation values indicative of the embedded data. Typically, one data bit is embedded in each frame of an input stereo audio signal by modifying the frame to produce a modulated frame whose modulated saturation value matches a target value indicative of the data bit. In other embodiments, a method for extracting data from a stereo audio signal in which the data have been embedded in accordance with an embodiment of the inventive embedding method. Other aspects are systems (e.g., programmed processors) configured to perform any embodiment of the inventive method.
Abstract:
A spread spectrum data hiding for audio signals is described. A set of pseudo-random noise sequences is added to an audio signal according to a data to be embedded. A masking curve is used to shape the added noise. A transient detection step can be used to control whether a shaped noise sequence is to be added or not. Embedded information is detected by first performing a whitening step and then performing a phase-only correlation with a same set of pseudo-random noise sequences. A detection method that is based on correlation of multiplexed noise sequences with a noise sequence embedded in the audio is also described.
Abstract:
Example embodiments disclosed herein relate to perception based multimedia processing. There is provided a method for processing multimedia data, the method includes automatically determining user perception on a segment of the multimedia data based on a plurality of clusters, the plurality of clusters obtained in association with predefined user perceptions and processing the segment of the multimedia data at least in part based on determined user perception on the segment. Corresponding system and computer program products are disclosed as well.
Abstract:
A media fingerprint archive system generates and archives media fingerprints from second media content portions such as commercials. A downstream media measurement system can extract/derive query fingerprints from an incoming signal, and query the media fingerprint archive system whether any of the query fingerprints matches any archived fingerprints. If so, the media measurement system can perform media measurements on a specific secondary media content portion from which the matched query fingerprint is derived. If not, the media measurement system can analyze media characteristics of a media content portion to determine whether the media content portion is a secondary media content portion and perform media measurement if needed to. The media measurement system may send fingerprints from an identified secondary media content portion to the media fingerprint archive system for storage.
Abstract:
A spread spectrum data hiding for audio signals is described. A set of pseudo-random noise sequences is added to an audio signal according to a data to be embedded. A masking curve is used to shape the added noise. A transient detection step can be used to control whether a shaped noise sequence is to be added or not. Embedded information is detected by first performing a whitening step and then performing a phase-only correlation with a same set of pseudo-random noise sequences. A detection method that is based on correlation of multiplexed noise sequences with a noise sequence embedded in the audio is also described.
Abstract:
In some embodiments, a method for embedding data (e.g., metadata for use during post-processing) in a stereo audio signal comprising frames. Each of the frames has a saturation value, and data are embedded in the stereo audio signal by modifying the signal to generate a modulated stereo audio signal comprising a sequence of modulated frames having modulated saturation values indicative of the embedded data. Typically, one data bit is embedded in each frame of an input stereo audio signal by modifying the frame to produce a modulated frame whose modulated saturation value matches a target value indicative of the data bit. In other embodiments, a method for extracting data from a stereo audio signal in which the data have been embedded in accordance with an embodiment of the inventive embedding method. Other aspects are systems (e.g., programmed processors) configured to perform any embodiment of the inventive method.
Abstract:
A spread spectrum data hiding for audio signals is described. A set of pseudo-random noise sequences is added to an audio signal according to a data to be embedded. A masking curve is used to shape the added noise. A transient detection step can be used to control whether a shaped noise sequence is to be added or not. Embedded information is detected by first performing a whitening step and then performing a phase-only correlation with a same set of pseudo-random noise sequences. A detection method that is based on correlation of multiplexed noise sequences with a noise sequence embedded in the audio is also described.
Abstract:
Forensic audio upmixer detection is described. Feature sets are extracted from an audio signal that has two or more individual channels. Based on the extracted feature sets, it is determined whether the audio signal was upmixed from audio content that has fewer channels.