Abstract:
A method of controlling fluid flow through a heating, ventilating, air conditioning, and refrigeration (HVAC-R) system includes measuring temperature and pressure at an outlet of an evaporator of the HVAC-R system, wherein the evaporator is in fluid communication with a compressor, a condenser, an expansion device between the evaporator and the condenser, and a flow control valve between the compressor and the condenser, and measuring a sub-cooling temperature at an outlet of the condenser. The measured evaporator temperature and pressure data is sent to a first superheat processor, and the measured sub-cooling temperature data is send to a second superheat processor. A control signal to the expansion device from the first superheat processor and a control signal to the flow control valve from the second superheat processor are then simultaneously sent.
Abstract:
A method of calibrating a plurality of superheat controllers includes attaching a plurality of superheat controllers to a manifold assembly, enclosing the manifold assembly within an environmental chamber, and simultaneously calibrating a pressure sensor within each of the plurality of superheat controllers.
Abstract:
A manifold assembly is configured to calibrate and test one or more superheat controllers and includes a manifold frame, a manifold having a plurality of fluid conduits mounted to the manifold frame, and a plurality of superheat controller fittings mounted to the fluid conduits, each superheat controller fitting configured to have a superheat controller attached thereto.
Abstract:
An adjustable shock absorber includes a housing defining an enclosed working space. A wall is formed in the working space and separates the working space into first and second fluid chambers. A compression valve is formed in the wall and a microvalve is attached to the compression valve and is operable to control fluid flow through the compression valve.
Abstract:
A manifold assembly is configured to calibrate and test one or more superheat controllers and includes a manifold frame, a manifold having a plurality of fluid conduits mounted to the manifold frame, and a plurality of superheat controller fittings mounted to the fluid conduits, each superheat controller fitting configured to have a superheat controller attached thereto.
Abstract:
A method of controlling fluid flow through a heating, ventilating, air conditioning, and refrigeration (HVAC-R) system includes measuring temperature and pressure at an outlet of an evaporator of the HVAC-R system, wherein the evaporator is in fluid communication with a compressor, a condenser, an expansion device between the evaporator and the condenser, and a flow control valve between the compressor and the condenser, and measuring a sub-cooling temperature at an outlet of the condenser. The measured evaporator temperature and pressure data is sent to a first superheat processor, and the measured sub-cooling temperature data is send to a second superheat processor. A control signal to the expansion device from the first superheat processor and a control signal to the flow control valve from the second superheat processor are then simultaneously sent.
Abstract:
A heating, ventilating, air conditioning, and refrigeration (HVAC-R) system includes an evaporator, a compressor, a condenser, an expansion device between the condenser and the evaporator, a superheat controller between the evaporator and the compressor, and a mass flow meter between the condenser and the expansion device. The superheat controller is configured to measure refrigerant fluid pressure and temperature and calculate superheat therefrom, to receive and analyze a mass flow rate of the refrigerant fluid traveling out of the condenser and measured by the mass flow meter, and further configured to provide a control signal to the expansion device.
Abstract:
An adjustable shock absorber includes a housing defining an enclosed working space. A wall is formed in the working space and separates the working space into first and second fluid chambers. A compression valve is formed in the wall and a microvalve is attached to the compression valve and is operable to control fluid flow through the compression valve.