Abstract:
A frequency-domain upmix process uses vector-based signal decomposition and methods for improving the selectivity of center channel extraction. The upmix processes described do not perform an explicit primary/ambient decomposition. This reduces the complexity and improves the quality of the center channel derivation. A method of upmixing a two-channel stereo signal to a three-channel signal is described. A left input vector and a right input vector are added to arrive at a sum magnitude. Similarly, the difference between the left input vector and the right input vector is determined to arrive at a difference magnitude. The difference between the sum magnitude and the difference magnitude is scaled to compute a center channel magnitude estimate, and this estimate is used to calculate a center output vector. A left output vector and a right output vector are computed. The method is completed by outputting the left output vector, the center output vector, and the right output vector.
Abstract:
A multiband dynamics compressor implements a solution for minimizing unwanted changes to the long-term frequency response. The solution essentially proposes undoing the multiband compression in a controlled manner using much slower smoothing times. In this regard, the compensation provided acts more like an equalizer than a compressor. What is applied is a very slowly time-varying, frequency-dependent post-gain (make-up gain) that attempts to restore the smoothed long-term level of each compressor band.
Abstract:
A multiband dynamics compressor implements a solution for minimizing unwanted changes to the long-term frequency response. The solution essentially proposes undoing the multiband compression in a controlled manner using much slower smoothing times. In this regard, the compensation provided acts more like an equalizer than a compressor. What is applied is a very slowly time-varying, frequency-dependent post-gain (make-up gain) that attempts to restore the smoothed long-term level of each compressor band.
Abstract:
A multiband dynamics compressor implements a frequency-domain solution for addressing unwanted magnitude peaks which may occur at the crossover frequency (boundary) between two adjacent frequency bands. The solution proposes making slight adjustments to the frequency band boundary locations, for example on a frame-by-frame basis, in order to prevent a spectral peak in the input signal from being located midway between two frequency bands. The adjustment to the boundary location pushes the energy of the spectral peak substantially into one frequency band for compression.
Abstract:
A frequency-domain upmix process uses vector-based signal decomposition and methods for improving the selectivity of center channel extraction. The upmix processes described do not perform an explicit primary/ambient decomposition. This reduces the complexity and improves the quality of the center channel derivation. A method of upmixing a two-channel stereo signal to a three-channel signal is described. A left input vector and a right input vector are added to arrive at a sum magnitude. Similarly, the difference between the left input vector and the right input vector is determined to arrive at a difference magnitude. The difference between the sum magnitude and the difference magnitude is scaled to compute a center channel magnitude estimate, and this estimate is used to calculate a center output vector. A left output vector and a right output vector are computed. The method is completed by outputting the left output vector, the center output vector, and the right output vector.
Abstract:
A multiband dynamics compressor implements a frequency-domain solution for addressing unwanted magnitude peaks which may occur at the crossover frequency (boundary) between two adjacent frequency bands. The solution proposes making slight adjustments to the frequency band boundary locations, for example on a frame-by-frame basis, in order to prevent a spectral peak in the input signal from being located midway between two frequency bands. The adjustment to the boundary location pushes the energy of the spectral peak substantially into one frequency band for compression.
Abstract:
When two loudspeakers play the same signal, a “phantom center” image is produced between the speakers. However, this image differs from one produced by a real center speaker. In particular, acoustical crosstalk produces a comb-filtering effect, with cancellations that may be in the frequency range needed for the intelligibility of speech. Methods for using phase decorrelation to fill in these gaps and produce a flatter magnitude response are described, reducing coloration and potentially enhancing dialogue clarity. These methods also improve headphone compatibility and reduce the tendency of the phantom image to move toward the nearest speaker.
Abstract:
A sound generator for use with microprocessor controlled amusement games includes a programmable sound generator and programmable filters. The programmable filters utilize duty-cycle-controlled resistors to provide analog filtering under microprocessor control. Resistor duty cycles are made variable over a wide range by means of aperiodic clocking signals.