Abstract:
In a system that performs mobile communication using at least two beams, by determining a size of a beam based on information that is acquired for mobile terminals attempting an access, a beam of a form having an adaptive size is formed and thus communication is performed. A beam sector including a plurality of beam segments and a beam segment that forms a beam of a minimum size within entire coverage is set, and while forming one beam per beam sector, a size of a beam is adaptively determined.
Abstract:
The present invention relates to an apparatus and a method of predicting radio interference of a receiver. The apparatus includes a radio station information collecting unit which receives information related to a target radio station and interfering radio stations; a grouping unit which groups the interfering radio stations using the collected information; an interference parameter distribution estimating unit which models distribution characteristics of interference parameters for interfering radio stations; and an interference intensity predicting unit which predicts a distribution characteristic at least one of an interference signal intensity of a single interfering radio station and an aggregated interference signal intensity for a plurality of interfering radio stations by using a probability density function models of the interference parameters for every interference group, and predicts a total radio interference intensity from the entire interfering radio stations using the single interference signal distribution characteristic which is calculated for every group.
Abstract:
A method in which a satellite or a terrestrial earth station that is included in a satellite communication system that shares a frequency resource with a terrestrial communication system allocates a frequency resource is provided. The satellite divides an area of a first satellite beam into at least one sector. The satellite determines a first sector in which a satellite terminal is located among the at least one sector. The satellite determines a second sector corresponding to the first sector among at least one sector that is included in a first terrestrial cell. The satellite allocates at least one of first frequency resources for the second sector to the satellite terminal. The first terrestrial cell is located within an area of a second satellite beam adjacent to the first satellite beam.
Abstract:
An operation method of a satellite in a non-terrestrial network may comprise: determining a frequency resource allocation order for allocating frequency resources to beams in consideration of a frequency band of a terrestrial system and degrees of interference to the terrestrial system; configuring a minimum performance condition for maintaining a service of the non-terrestrial network, the minimum performance condition being applied to each of the beams; configuring an operating condition of a multi-agent deep reinforcement learning for each beam controller of the satellite; and controlling the each beam controller to sequentially allocate the frequency resources to a managed beam according to the frequency resource allocation order while considering the minimum performance condition.
Abstract:
A frequency resource allocation apparatus comprising a processor is configured to select resources for transmitting a signal to a user based on a learning model, allocate the selected resources to the user, transmit the signal to the user using the selected resources, receive information about whether the transmission of the signal is successful or not from the user via a feedback channel after a delayed time, and update an internal parameter of the learning model with respect to the resources used for transmitting the signal.
Abstract:
A method of designing and communicating a beam in a communication system is provided. More particularly, a method of designing and communicating a beam in a communication system using carrier aggregation in order to increase a maximum data rate in a multiple beam mobile communication system is provided. By applying carrier aggregation, a maximum data rate can be improved.
Abstract:
A method of forming a beam and a method of allocating a resource in a long term evolution (LTE)-based mobile communication system are provided. More particularly, a method of forming an adaptive satellite multiple beam for enhancing multiple beam performance and a method of allocating a resource that can relieve interference in a beam that is formed according to the method in a multiple beam system in which satellite communication and mobile communication is coupled based on LTE are provided. When providing a communication service that supports both satellite communication and ground communication, performance degradation can be reduced with the same interface, and by providing a method of forming an adaptive beam and a method of allocating a resource by relieving interference of the formed beam in consideration of a position of the terminal by independently allocating a subcarrier to the terminal and enabling the terminal to process the subcarrier, performance of a multiple beam can be improved.