CLIMATE CONTROL SYSTEMS FOR USE WITH HIGH GLIDE WORKING FLUIDS AND METHODS FOR OPERATION THEREOF

    公开(公告)号:US20230130167A1

    公开(公告)日:2023-04-27

    申请号:US17507403

    申请日:2021-10-21

    Abstract: Climate control systems and methods of operating them are provided that circulate a working fluid including a high glide refrigerant blend having first and second refrigerants with a difference in boiling points ≥about 25° F. at atmospheric pressure. The system includes a gas-liquid separation vessel that generates a vapor stream and a liquid stream. A compressor receives the vapor stream and generates a pressurized vapor stream. A liquid pump receives the liquid stream and generates a pressurized liquid stream. A condenser is disposed downstream of the compressor and liquid pump and receives and cools the pressurized mixed vapor and liquid stream. An evaporator receives and at least partially vaporizes the multiphase working fluid and directs it to the gas-liquid separating vessel. An expansion device between the condenser and the evaporator processes the multiphase working fluid stream. Lastly, a fluid conduit for circulating the working fluid through the components is provided.

    Micro Booster Supermarket Refrigeration Architecture

    公开(公告)号:US20210055045A1

    公开(公告)日:2021-02-25

    申请号:US17093245

    申请日:2020-11-09

    Abstract: A refrigeration system includes first and second compressors, a condenser, first and second evaporators, and a valve. The first compressor is fluidly connected to first suction and discharge lines. The second compressor is fluidly connected to second suction and discharge lines. The second suction line is fluidly connected to the first discharge line. The condenser receives refrigerant from the second compressor. The first evaporator receives refrigerant from the condenser and discharges refrigerant to the first suction line. The second evaporator receives refrigerant from the condenser and discharges refrigerant to the second suction line. The valve is disposed between the first evaporator and the first suction line. The first suction line receives refrigerant when the valve is in a first position. The second suction line receives refrigerant when the valve is in a second position. The first compressor is bypassed when the valve is in the second position.

    Micro Booster Supermarket Refrigeration Architecture

    公开(公告)号:US20180195773A1

    公开(公告)日:2018-07-12

    申请号:US15868636

    申请日:2018-01-11

    Abstract: A refrigeration system includes first and second compressors, a condenser, first and second evaporators, and a valve. The first compressor is fluidly connected to first suction and discharge lines. The second compressor is fluidly connected to second suction and discharge lines. The second suction line is fluidly connected to the first discharge line. The condenser receives refrigerant from the second compressor. The first evaporator receives refrigerant from the condenser and discharges refrigerant to the first suction line. The second evaporator receives refrigerant from the condenser and discharges refrigerant to the second suction line. The valve is disposed between the first evaporator and the first suction line. The first suction line receives refrigerant when the valve is in a first position. The second suction line receives refrigerant when the valve is in a second position. The first compressor is bypassed when the valve is in the second position.

Patent Agency Ranking