Abstract:
A power generation system includes a combustion system, a turbocharger, and a heat recovery system. The combustion system is configured to combust a fuel with a flow of air. The combustion system is further configured to generate an exhaust stream. The turbocharger is configured to compress a flow of compressed air and to channel the flow of compressed air to the combustion system. The combustion system is configured to combust the fuel with the flow of compressed air and an additional flow of air. The heat recovery system is configured to recover heat from the exhaust stream and to drive the turbocharger. The heat recovery system uses a supercritical working fluid to absorb heat from the exhaust stream and to drive the turbocharger.
Abstract:
A method for processing a flowback composition stream from a well head includes controlling a first flow rate of the flow back composition stream to a second flow rate by regulating the flowback composition stream from a first pressure to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream. The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling a third flow rate of the second gas stream by regulating a third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
Abstract:
A magnetic cooling system is presented. The system includes at least one magnetic assembly, at least one magnetic regenerator including a magnetocaloric material, movably arranged in a closed loop to cyclically pass through the at least one magnetic assembly and a fluid supply device in fluid communication with the at least one magnetic assembly to supply a cooling fluid to the at least one magnetic assembly. A turbine assembly including a magnetic cooling system disposed in a path of an inlet air to a turbine system is also presented.
Abstract:
A heat exchange assembly for treating carbon dioxide (CO2) is described. The heat exchange assembly includes a housing that includes an inlet, an outlet, and an inner surface that defines a cavity extending between the inlet and the outlet. The housing is configured to receive solid CO2 through the inlet. At least one heat exchange tube extends through the housing. The heat exchange tube is oriented to contact solid CO2 to facilitate transferring heat from solid CO2 to a heat exchanger fluid being channeled through the heat exchange tube to facilitate converting at least a portion of solid CO2 into liquid CO2. The heat exchange assembly is configured to recover a refrigeration value from the solid CO2 and transfer at least a portion of the recovered refrigeration value to a flue gas.
Abstract:
A power generation system includes a combustion system, a turbocharger, and a heat recovery system. The combustion system is configured to combust a fuel with a flow of air. The combustion system is further configured to generate an exhaust stream. The turbocharger is configured to compress a flow of compressed air and to channel the flow of compressed air to the combustion system. The combustion system is configured to combust the fuel with the flow of compressed air and an additional flow of air. The heat recovery system is configured to recover heat from the exhaust stream and to drive the turbocharger. The heat recovery system uses a supercritical working fluid to absorb heat from the exhaust stream and to drive the turbocharger.
Abstract:
A turbocharger system includes a low pressure turbocharger (LPT) that includes an LPT compressor and an LPT turbine. The turbocharger system is configured to divide ambient air compressed by the LPT compressor into a heat exchanger flow and an HPT compressor inlet flow. The turbocharger system also includes a high pressure turbocharger (HPT) that includes an HPT compressor and an HPT turbine. The HPT compressor is configured to further compress the HPT compressor inlet flow, which is then channeled to a rotary machine as auxiliary compressed air. The turbocharger system further includes a heat exchanger configured to place the heat exchanger flow into thermal communication with exhaust gases associated with the rotary machine. The discharged heat exchanger flow is divided into parallel streams, and the LPT turbine and the HPT turbine are each configured to be driven by a respective one of the parallel streams.
Abstract:
An evaporative cooling system for a gas turbine includes a first plurality of evaporative cooling media, spaced from the other evaporative cooling media. The system also includes a plurality of valves, with water flowing through at least one valve to fully wet at least one evaporative cooling medium. In one mode of operation, at least one evaporative cooling medium remains dry.
Abstract:
An evaporative cooling system for a gas turbine includes a first plurality of evaporative cooling media, spaced from the other evaporative cooling media. The system also includes a plurality of valves, with water flowing through at least one valve to fully wet at least one evaporative cooling medium. In one mode of operation, at least one evaporative cooling medium remains dry.
Abstract:
A self-cooling electric submersible pump having an integrated cooling system is provided. The cooling system is configured to cool and lubricate the electric motor section of the pump by expanding a compressed multi-component coolant fluid through flow channels within the motor. The coolant fluid contains a first fluid having a boiling point of at least 230° C. and a second fluid having a boiling point of less than 150° C. During pump operation the first fluid acts as a largely incompressible liquid and the second fluid behaves as a compressible gas. A compressor compresses the second fluid in the presence of the first fluid to produce a hot compressed coolant fluid from which heat is transferred to a production fluid being processed by the pump. The compressed coolant fluid is expanded through an orifice and into the motor flow channels, returning thereafter to the compressor.
Abstract:
A method for processing a flowback composition stream from a well head is provided. The flowback composition stream has a first flow rate and a first pressure. Method also includes controlling the first flow rate to a second flow rate by regulating the flowback composition stream to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling the third flow rate of the second gas stream by regulating the third pressure of the second gas stream to a fourth pressure that is different than the third pressure.