Abstract:
A method of making a composite magnet wire includes mixing alumina nano particles with a polyimide polymer to form a polyimide mixture, the alumina nano particles having a surface treatment applied to outer surfaces of the alumina nano particles, the surface treatment including a phenyl-silane; coating a wire with the polyimide mixture by passing the wire through a coating die; heating the coated wire; cooling the coated wire; passing the coated wire through an annealing oven at a temperature of about 425° C. to about 475° C. at a speed of about 15 to about 30 feet per minute to anneal the coated wire; cooling the annealed coating wire; spooling the coated wire onto a metal spool; heating the spooled wire at about 300° C. to about 400° C. for about 20 to about 40 minutes; and cooling the heated spooled wire.
Abstract:
A method of making a composite magnet wire includes mixing alumina nano particles with a polyimide polymer to form a polyimide mixture, the alumina nano particles having a surface treatment applied to outer surfaces of the alumina nano particles, the surface treatment including a phenyl-silane; coating a wire with the polyimide mixture by passing the wire through a coating die; heating the coated wire; cooling the coated wire; passing the coated wire through an annealing oven at a temperature of about 425° C. to about 475° C. at a speed of about 15 to about 30 feet per minute to anneal the coated wire; cooling the annealed coating wire; spooling the coated wire onto a metal spool; heating the spooled wire at about 300° C. to about 400° C. for about 20 to about 40 minutes; and cooling the heated spooled wire.