Abstract:
A cooling arrangement for a gas turbine engine. The cooling arrangement comprises a discharge channel for air flow from a compressor, a first cooling channel and at least one aperture providing communication between the flow of air through the discharge channel and the first cooling channel. A restrictor device in the aperture regulates the flow of air between the discharge channel and the first cooling channel. The restrictor device deforms to vary air flowing through the aperture in response to a physical condition of the engine. This physical condition of the engine may be that of the temperature of air flowing through the discharge channel, the restrictor device responding to regulate the flow of air based on that temperature. The restrictor device may be a two-way shape memory alloy.
Abstract:
A turbine bucket adapted to be supported on a turbine or rotor wheel includes an airfoil portion extending radially relative to a longitudinal axis of the rotor wheel and having a leading edge, a trailing edge, a pressure side and a suction side. At least one tip shroud extends in opposite circumferential directions, the shroud having a first hard face adapted to engage a mating second hard face on a shroud extending circumferentially from an adjacent bucket. The first hard face defined by a surface portion that varies circumferentially with an increasing radius as measured from the longitudinal axis of the rotor wheel.
Abstract:
A turbine bucket adapted to be supported on a turbine or rotor wheel includes an airfoil portion extending radially relative to a longitudinal axis of the rotor wheel and having a leading edge, a trailing edge, a pressure side and a suction side. At least one tip shroud extends in opposite circumferential directions, the shroud having a first hard face adapted to engage a mating second hard face on a shroud extending circumferentially from an adjacent bucket. The first hard face defined by a surface portion that varies circumferentially with an increasing radius as measured from the longitudinal axis of the rotor wheel.
Abstract:
A turbine shroud arrangement for a turbine system includes a first region of a tip shroud, the first region disposed in close proximity to an adjacent tip shroud. Also included is a second region of the tip shroud, the second region disposed in close proximity to the adjacent tip shroud, the second region comprising a temperature sensitive material configured to engage the second region and the adjacent tip shroud in contact over a first operating condition of the turbine system and configured to provide a second region gap over a second operating condition of the turbine system.
Abstract:
Various embodiments include a turbomachine with a plasma seal system. The turbomachine can include: a diaphragm section having: an axially facing diaphragm wall; and a discourager seal protruding axially from the axially facing diaphragm wall; a rotor section having: a bucket having an axially facing bucket wall opposing the axially facing diaphragm wall; and a seal member extending from the axially facing bucket wall, wherein the seal member axially overlaps a portion of the discourager seal of the diaphragm section leaving a radial gap between the seal member and the discourager seal; and a plasma generator coupled to the diaphragm section for generating a plasma which reduces the radial gap between the seal member and the discourager seal.
Abstract:
An exhaust plume control structure includes a mounting member configured to mount to an exhaust flow source. At least one divider member operatively couples to the mounting member and is positioned in fluid communication with the exhaust flow source. A diverter member operatively couples to the divider member(s) to radially direct an initial exhaust flow from the exhaust plume towards the divider member(s). Each divider member separates the initial exhaust flow into a plurality of exhaust flows. A number of peripherally spaced, radially extending vanes may also separate the exhaust flows into additional exhaust flows. Each of the additional exhaust flows has a slower velocity than the initial exhaust flow. The structure reduces exhaust flow velocity and may provide back pressure to the initial exhaust flow. A power generating plant including the structure is also disclosed.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes an elongated body having a center portion that is disposed between a first end portion and a second end portion. The first end portion, center portion and second end portion at least partially define a generally arcuate top portion of the elongated body. At least a portion of the top portion may be configured to contact with a groove that is defined between the adjacent turbine blades. The first end portion and the second end portion have substantially semi-cylindrical cross sectional shapes and the center portion has a cylindrical cross sectional shape. A bottom portion of the elongated body diverges radially outwardly from the first end portion to the center portion and from the second end portion to the center portion.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes an elongated body having a center portion disposed between a first end portion and a second end portion. The first end portion, center portion and second end portion define an outer surface of the elongated body. The outer surface is configured to contact with a groove defined between the adjacent turbine blades. The elongated body defines a slot that extends radially inwardly through the outer surface and axially through the elongated body.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes an elongated body having a center portion that is disposed between a first end portion and a second end portion. The first end portion, center portion and second end portion at least partially define a generally arcuate top portion of the elongated body. At least a portion of the top portion may be configured to contact with a groove that is defined between the adjacent turbine blades. The first end portion and the second end portion have substantially semi-cylindrical cross sectional shapes and the center portion has a cylindrical cross sectional shape. A bottom portion of the elongated body diverges radially outwardly from the first end portion to the center portion and from the second end portion to the center portion.
Abstract:
A turbine bucket shroud arrangement for a turbine system includes a contact region of a tip shroud, wherein the contact region is in close proximity to an adjacent tip shroud. Also included is a negative thermal expansion material disposed proximate the contact region, the contact region comprising a first volume during a startup condition and a shutdown condition of the turbine system and a second volume during a steady state condition of the turbine system, wherein the second volume is less than the first volume.